Skip to main content
Top
Published in: Neural Computing and Applications 8/2011

01-11-2011 | ISNN 2010

Functional modeling of astrocytes in epilepsy: a feedback system perspective

Authors: Mahmood Amiri, Fariba Bahrami, Mahyar Janahmadi

Published in: Neural Computing and Applications | Issue 8/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Astrocytes, a subtype of glial cells, in the brain provide structural and metabolic supports to the nervous system. They are also active partners in synaptic transmission and neuronal activities. In the present study, a biologically plausible thalamocortical neural population model (TCM) originally proposed by Suffczynski et al. (Neuroscience 126(2):467–484, 2004) is extended by integrating the functional role of astrocytes in the regulation of synaptic transmission. Therefore, the original TCM is modified to consider neuron-astrocyte interactions. Using the modified model, it is demonstrated that the healthy astrocytes are capable to compensate the variation of cortical excitatory input by increasing their firing frequency. In this way, they can preserve the attractor corresponding to the normal activity. Furthermore, the performance of the pathological astrocytes is also investigated. It is hypothesized that one of the plausible causes of seizures is the malfunction of astrocytes in the regulatory feedback loop. That is, pathologic astrocytes are not any more able to regulate and/or compensate the excessive increase of the cortical input. Therefore, pathologic astrocytes lead to the emergence of paroxysmal attractor. Results demonstrate that disruption of the homeostatic or signaling function of astrocytes can initiate the synchronous firing of neurons, suggesting that astrocytes might be one of the potential targets for the treatment of epilepsy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, Staniek M, Wagner T (2009) Synchronization phenomena in human epileptic brain networks. J Neurosci Meth 183(1):42–48CrossRef Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, Staniek M, Wagner T (2009) Synchronization phenomena in human epileptic brain networks. J Neurosci Meth 183(1):42–48CrossRef
2.
go back to reference Demont-Guignard S, Benquet P, Gerber U, Wendling F (2009) Analysis of intracerebral EEG recordings of epileptic spikes: insights from a neural network model. IEEE Trans Biomed Eng 56(12):2782–2795CrossRef Demont-Guignard S, Benquet P, Gerber U, Wendling F (2009) Analysis of intracerebral EEG recordings of epileptic spikes: insights from a neural network model. IEEE Trans Biomed Eng 56(12):2782–2795CrossRef
3.
go back to reference Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336CrossRef Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336CrossRef
4.
go back to reference Seifert G, Carmignoto G, Steinhäuser C (in press) Astrocyte dysfunction in epilepsy. Brian Res Rev Seifert G, Carmignoto G, Steinhäuser C (in press) Astrocyte dysfunction in epilepsy. Brian Res Rev
5.
go back to reference Gertrudis P, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25(9):2192–2203CrossRef Gertrudis P, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25(9):2192–2203CrossRef
6.
go back to reference Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542CrossRef Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542CrossRef
7.
go back to reference Voltarra A, Steinhauser C (2004) Glial modulation of synaptic transmission in the hippocampus. GLIA 47:249–257CrossRef Voltarra A, Steinhauser C (2004) Glial modulation of synaptic transmission in the hippocampus. GLIA 47:249–257CrossRef
8.
go back to reference Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743CrossRef Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743CrossRef
9.
go back to reference Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215CrossRef Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215CrossRef
10.
go back to reference Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63CrossRef Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13(2):54–63CrossRef
11.
go back to reference Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacol 57(4):343–346CrossRef Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacol 57(4):343–346CrossRef
12.
go back to reference Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215CrossRef Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215CrossRef
13.
go back to reference Fellin T, Carmignoto G (2004) Neuron-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15CrossRef Fellin T, Carmignoto G (2004) Neuron-to-astrocyte signaling in the brain represents a distinct multifunctional unit. J Physiol 559:3–15CrossRef
14.
go back to reference Chakravarthy N, Tsakalis K, Sabesan S, Iasemidis LD (2009) Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann Biomed Eng 37(3):565–585CrossRef Chakravarthy N, Tsakalis K, Sabesan S, Iasemidis LD (2009) Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann Biomed Eng 37(3):565–585CrossRef
15.
go back to reference Suffczynski P, Wendling F, Bellanger JJ, Lopes da Silva FH (2006) Some insights into computational models of (patho) physiological brain activity. Proc IEEE 94(4):784–804CrossRef Suffczynski P, Wendling F, Bellanger JJ, Lopes da Silva FH (2006) Some insights into computational models of (patho) physiological brain activity. Proc IEEE 94(4):784–804CrossRef
16.
go back to reference Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Phys Biol 1:35–41CrossRef Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Phys Biol 1:35–41CrossRef
17.
go back to reference Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1–9CrossRef Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1–9CrossRef
18.
go back to reference Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):1–11MathSciNetCrossRef Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4(5):1–11MathSciNetCrossRef
19.
go back to reference Postnove DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural-glial interaction. BioSystems 89:84–91CrossRef Postnove DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural-glial interaction. BioSystems 89:84–91CrossRef
20.
go back to reference Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35:425–445CrossRef Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35:425–445CrossRef
21.
go back to reference Garbo AD (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35:361–382CrossRef Garbo AD (2009) Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35:361–382CrossRef
22.
go back to reference Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39:197–208CrossRef Ullah G, Jung P, Cornell-Bell AH (2006) Anti-phase calcium oscillations in astrocytes via inositol (1, 4, 5)-trisphosphate regeneration. Cell Calcium 39:197–208CrossRef
23.
go back to reference Garbo AD, Barbi M, Chillemi S, Alloisio S, Nobile M (2007) Calcium signaling in astrocytes and modulation of neural activity. BioSystems 89:74–83CrossRef Garbo AD, Barbi M, Chillemi S, Alloisio S, Nobile M (2007) Calcium signaling in astrocytes and modulation of neural activity. BioSystems 89:74–83CrossRef
24.
go back to reference Lavrentovich M, Hemkin SA (2008) Mathematical model of spontaneous calcium (II) oscillations in astrocytes. J Theoretic Biol 251(4):553–560CrossRef Lavrentovich M, Hemkin SA (2008) Mathematical model of spontaneous calcium (II) oscillations in astrocytes. J Theoretic Biol 251(4):553–560CrossRef
25.
go back to reference Suffczynski P, Kalitzin S, Lopes da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484CrossRef Suffczynski P, Kalitzin S, Lopes da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126(2):467–484CrossRef
26.
go back to reference Hung J, Colicos MA (2008) Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS ONE 3(11):e3692 Hung J, Colicos MA (2008) Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS ONE 3(11):e3692
27.
go back to reference Suffczynski P, Kalitzin S, Lopes da Silva FH (2008) A neuronal network model of corticothalamic oscillations: the emergence of epileptiform absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 403–418 Suffczynski P, Kalitzin S, Lopes da Silva FH (2008) A neuronal network model of corticothalamic oscillations: the emergence of epileptiform absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 403–418
28.
go back to reference Destexhe A (2008) Corticothalamic feedback: a key to explain absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 184–211 Destexhe A (2008) Corticothalamic feedback: a key to explain absence seizures. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 184–211
29.
go back to reference Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Modeling and controlling synchronization in a neuron level population model. Int J Neural Syst 17(2):123–138CrossRef Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Modeling and controlling synchronization in a neuron level population model. Int J Neural Syst 17(2):123–138CrossRef
30.
go back to reference D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Therapeut 103:95–108CrossRef D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Therapeut 103:95–108CrossRef
31.
go back to reference Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74CrossRef Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74CrossRef
32.
go back to reference Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58:168–178CrossRef Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58:168–178CrossRef
33.
go back to reference De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRef De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRef
34.
go back to reference Rogawski MA (2005) Astrocytes get in the act in epilepsy. Nat Med 11(9):919–920CrossRef Rogawski MA (2005) Astrocytes get in the act in epilepsy. Nat Med 11(9):919–920CrossRef
35.
go back to reference Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83(4):367–378CrossRef Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83(4):367–378CrossRef
36.
go back to reference Wendling F, Chauvel P (2008) Transition to ictal activity in temporal lobe epilepsy: insights from macroscopic models. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 356–386 Wendling F, Chauvel P (2008) Transition to ictal activity in temporal lobe epilepsy: insights from macroscopic models. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, Amsterdam, pp 356–386
37.
go back to reference Binder DK, Steinhäuser C (2009) Role of astrocytes in epilepsy. astrocytes in (Patho)physiology of the nervous system. Springer, Berlin, pp 649–671 Binder DK, Steinhäuser C (2009) Role of astrocytes in epilepsy. astrocytes in (Patho)physiology of the nervous system. Springer, Berlin, pp 649–671
38.
go back to reference Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158(1):253–259CrossRef Santello M, Volterra A (2009) Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 158(1):253–259CrossRef
39.
go back to reference Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(12):72–83CrossRef Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(12):72–83CrossRef
40.
go back to reference Lopes da Silva FH (2008) The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Rev Biomed Eng 1:143–156CrossRef Lopes da Silva FH (2008) The impact of EEG/MEG signal processing and modeling in the diagnostic and management of epilepsy. IEEE Rev Biomed Eng 1:143–156CrossRef
Metadata
Title
Functional modeling of astrocytes in epilepsy: a feedback system perspective
Authors
Mahmood Amiri
Fariba Bahrami
Mahyar Janahmadi
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Neural Computing and Applications / Issue 8/2011
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-010-0479-0

Other articles of this Issue 8/2011

Neural Computing and Applications 8/2011 Go to the issue

Premium Partner