Skip to main content
Top
Published in: Semiconductors 7/2020

01-07-2020 | FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES

GaAs Semiconductor Passivated by (NH4)2Sx: Analysis of Different Passivation Methods Using Electrical Characteristics and XPS Measurements

Authors: H. Mahmoodnia, A. Salehi, V. R. Mastelaro

Published in: Semiconductors | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Some of the IIIV semiconductor used in various devices suffer from the surface high density of states limiting their application. This study compares and evaluates five different ammonium sulfide passivation methods on GaAs surface with the aim to enhance the electrical characteristics of Au|n-GaAs Schottky junction. Wet chemical passivation of the n-GaAs surface was carried out by dipping the samples in saturated ammonium sulfide solutions at various temperatures and for various times. We also used acidic cleaning to improve the device performance. Our investigation shows a noticeable improvement in the electrical characteristics of the device reported here using acidic cleaning and ammonium sulfide passivation methods. A 23% increase in Schottky barrier height is found, which is much higher than that reported in the literature. Further, we measured a reduction of around three orders of magnitudes in saturation current as well as improvement in ideality factor to 1.23 for the best conditions of surface acidic cleaning and passivation. X-ray photoelectron spectroscopy study revealed a suppression of oxide layer by introduction of sulfide species in GaAs surface after the passivation. The lowest concentration of oxygen was found on the surface of the sample passivated under the optimum condition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Jiang, F. Tang, Q. Xie, P. Calka, S.-H. Jung, and M. E. Givens, ASM IP Holding B. V. Almere, NL, USA (2018). X. Jiang, F. Tang, Q. Xie, P. Calka, S.-H. Jung, and M. E. Givens, ASM IP Holding B. V. Almere, NL, USA (2018).
2.
go back to reference C. Al-Amin, M. Karabiyik, P. K. Vabbina, R. Sinha, and N. Pala, Nanomaterials 6 (6), 86 (2016).CrossRef C. Al-Amin, M. Karabiyik, P. K. Vabbina, R. Sinha, and N. Pala, Nanomaterials 6 (6), 86 (2016).CrossRef
3.
go back to reference E. V. Lutsenko, M. V. Rzheutski, A. G. Vainilovich, I. E. Svitsiankou, V. A. Shulenkova, E. V. Muravitskaya, A. N. Alexeev, S. I. Petrov, and G. P. Yablonskii, Semiconductors 52, 2107 (2018).ADSCrossRef E. V. Lutsenko, M. V. Rzheutski, A. G. Vainilovich, I. E. Svitsiankou, V. A. Shulenkova, E. V. Muravitskaya, A. N. Alexeev, S. I. Petrov, and G. P. Yablonskii, Semiconductors 52, 2107 (2018).ADSCrossRef
4.
go back to reference V. N. Bessolov, E. V. Konenkova, T. A. Orlova, S. N. Rodin, N. V. Seredova, A. V. Solomnikova, M. P. Shcheglov, D. S. Kibalov, and V. K. Smirnov, Semiconductors 53, 989 (2019).ADSCrossRef V. N. Bessolov, E. V. Konenkova, T. A. Orlova, S. N. Rodin, N. V. Seredova, A. V. Solomnikova, M. P. Shcheglov, D. S. Kibalov, and V. K. Smirnov, Semiconductors 53, 989 (2019).ADSCrossRef
5.
6.
go back to reference W. Wang, G. Lee, M. Huang, R. M. Wallace, and K. Cho, J. Appl. Phys. 107, 103720 (2010).ADSCrossRef W. Wang, G. Lee, M. Huang, R. M. Wallace, and K. Cho, J. Appl. Phys. 107, 103720 (2010).ADSCrossRef
8.
go back to reference N. X. Xue Chen, Z. Yang, F. Gong, Z. Wei, D. Wang, J. Tang, X. Fang, D. Fang, and L. Liao, Nanotechnology 29, 1 (2018). N. X. Xue Chen, Z. Yang, F. Gong, Z. Wei, D. Wang, J. Tang, X. Fang, D. Fang, and L. Liao, Nanotechnology 29, 1 (2018).
9.
go back to reference F. Chen, J. L. Tang, G. J. Liu, D. Fang, X. Gao, Z. K. Xu, X. Fang, X. H. Ma, L. Xu, X. H. Wang, and Z. P. Wei, Adv. Mater. Res. 1118, 154 (2015).CrossRef F. Chen, J. L. Tang, G. J. Liu, D. Fang, X. Gao, Z. K. Xu, X. Fang, X. H. Ma, L. Xu, X. H. Wang, and Z. P. Wei, Adv. Mater. Res. 1118, 154 (2015).CrossRef
10.
go back to reference M. V. Lebedev, T. V. Lvova, A. L. Shakhmin, O. V. Rakhimova, P. A. Dementev, and I. V. Sedova, Semiconductors 53, 892 (2019).ADSCrossRef M. V. Lebedev, T. V. Lvova, A. L. Shakhmin, O. V. Rakhimova, P. A. Dementev, and I. V. Sedova, Semiconductors 53, 892 (2019).ADSCrossRef
11.
go back to reference T. V. Lvova, A. L. Shakhmin, I. V. Sedova, and M. V. Lebedev, Appl. Surf. Sci. 311, 300 (2014).ADSCrossRef T. V. Lvova, A. L. Shakhmin, I. V. Sedova, and M. V. Lebedev, Appl. Surf. Sci. 311, 300 (2014).ADSCrossRef
12.
go back to reference S. L. Heslop, L. Peckler, and A. J. Muscat, J. Vacuum Sci. Technol. A 35, 03E110 (2017). S. L. Heslop, L. Peckler, and A. J. Muscat, J. Vacuum Sci. Technol. A 35, 03E110 (2017).
13.
go back to reference S. Jiang, G. He, S. Liang, L. Zhu, W. Li, C. Zheng, J. Lv, and M. Liu, J. Alloys Compd. 704, 322 (2017).CrossRef S. Jiang, G. He, S. Liang, L. Zhu, W. Li, C. Zheng, J. Lv, and M. Liu, J. Alloys Compd. 704, 322 (2017).CrossRef
14.
go back to reference S. Subramanian, E. Y.-J. Kong, D. Li, S. Wicaksono, S. F. Yoon, and Y. C. Yeo, IEEE Trans. Electron Dev. 61, 2767 (2014).ADSCrossRef S. Subramanian, E. Y.-J. Kong, D. Li, S. Wicaksono, S. F. Yoon, and Y. C. Yeo, IEEE Trans. Electron Dev. 61, 2767 (2014).ADSCrossRef
15.
go back to reference S. Kumar, S. Kumari, S. K. Jangir, R. K. Pandey, A. Goyal, G. Upadhyay, P. Mishra, T. Srinivasan, and A. K. Mahapatro, Integr. Ferroelectr. 186, 77 (2018).CrossRef S. Kumar, S. Kumari, S. K. Jangir, R. K. Pandey, A. Goyal, G. Upadhyay, P. Mishra, T. Srinivasan, and A. K. Mahapatro, Integr. Ferroelectr. 186, 77 (2018).CrossRef
16.
go back to reference H. Zhang, J. Yang, J.-R. Chen, J. R. Engstrom, T. Hanrath, and F. W. Wise, J. Phys. Chem. Lett. 7, 642 (2016).CrossRef H. Zhang, J. Yang, J.-R. Chen, J. R. Engstrom, T. Hanrath, and F. W. Wise, J. Phys. Chem. Lett. 7, 642 (2016).CrossRef
17.
go back to reference R. Ghita, C. Negrila, C. Cotirlan, and C. Logofatu, Digest J. Nanomater. Biostruct. 8, 1335 (2013). R. Ghita, C. Negrila, C. Cotirlan, and C. Logofatu, Digest J. Nanomater. Biostruct. 8, 1335 (2013).
19.
go back to reference L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, Crystals 8, 226 (2018).CrossRef L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, Crystals 8, 226 (2018).CrossRef
21.
22.
23.
go back to reference T. Kuan, P. Batson, T. Jackson, H. Rupprecht, and E. Wilkie, J. Appl. Phys. 54, 6952 (1983).ADSCrossRef T. Kuan, P. Batson, T. Jackson, H. Rupprecht, and E. Wilkie, J. Appl. Phys. 54, 6952 (1983).ADSCrossRef
24.
go back to reference D. H. van Dorp, S. Arnauts, M. Laitinen, T. Sajavaara, J. Meersschaut, T. Conard, F. Holsteyns, and J. Kelly, Solid State Phenom. 282, 48 (2018).CrossRef D. H. van Dorp, S. Arnauts, M. Laitinen, T. Sajavaara, J. Meersschaut, T. Conard, F. Holsteyns, and J. Kelly, Solid State Phenom. 282, 48 (2018).CrossRef
27.
28.
go back to reference S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).CrossRef S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).CrossRef
29.
go back to reference D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006). D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006).
30.
go back to reference J. Behnejad, A. Salehi, and H. Mahmoodnia, in Iranian IEEE Conference on Electrical Engineering ICEE, 2017 (2017), p. 283. J. Behnejad, A. Salehi, and H. Mahmoodnia, in Iranian IEEE Conference on Electrical Engineering ICEE, 2017 (2017), p. 283.
31.
go back to reference W. Jin, Y. Liu, K. Yuan, K. Zhang, Y. Ye, W. Wei, and L. Dai, IEEE Electron Dev. Lett. 40, 119 (2019).ADSCrossRef W. Jin, Y. Liu, K. Yuan, K. Zhang, Y. Ye, W. Wei, and L. Dai, IEEE Electron Dev. Lett. 40, 119 (2019).ADSCrossRef
32.
go back to reference A. Kırsoy, M. Ahmetoglu, A. Asimov, and B. Kucur, Acta Phys. Polon. A 128, B-170 (2015).CrossRef A. Kırsoy, M. Ahmetoglu, A. Asimov, and B. Kucur, Acta Phys. Polon. A 128, B-170 (2015).CrossRef
33.
go back to reference N. Fairley, Casa Software Ltd., 2005. http://www.casaxps.com. N. Fairley, Casa Software Ltd., 2005. http://www.casaxps.com.
34.
go back to reference C. Spindt, R. Besser, R. Cao, K. Miyano, C. Helms, and W. Spicer, Appl. Phys. Lett. 54, 1148 (1989).ADSCrossRef C. Spindt, R. Besser, R. Cao, K. Miyano, C. Helms, and W. Spicer, Appl. Phys. Lett. 54, 1148 (1989).ADSCrossRef
35.
go back to reference H. A. Budz, M. C. Biesinger, and R. R. LaPierre, J. Vacuum Sci. Technol. B 27, 637 (2009).ADSCrossRef H. A. Budz, M. C. Biesinger, and R. R. LaPierre, J. Vacuum Sci. Technol. B 27, 637 (2009).ADSCrossRef
36.
go back to reference S. C. Ghosh, M. C. Biesinger, R. R. LaPierre, and P. Kruse, J. Appl. Phys. 101, 114322 (2007).ADSCrossRef S. C. Ghosh, M. C. Biesinger, R. R. LaPierre, and P. Kruse, J. Appl. Phys. 101, 114322 (2007).ADSCrossRef
Metadata
Title
GaAs Semiconductor Passivated by (NH4)2Sx: Analysis of Different Passivation Methods Using Electrical Characteristics and XPS Measurements
Authors
H. Mahmoodnia
A. Salehi
V. R. Mastelaro
Publication date
01-07-2020
Publisher
Pleiades Publishing
Published in
Semiconductors / Issue 7/2020
Print ISSN: 1063-7826
Electronic ISSN: 1090-6479
DOI
https://doi.org/10.1134/S106378262007009X

Other articles of this Issue 7/2020

Semiconductors 7/2020 Go to the issue

SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA

2D SiC/Si Structure: Electron States and Adsorbability

Premium Partner