Skip to main content
Top

2014 | OriginalPaper | Chapter

Gold Nanoclusters: Size-Controlled Synthesis and Crystal Structures

Authors : Chenjie Zeng, Rongchao Jin

Published in: Gold Clusters, Colloids and Nanoparticles I

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the major goals in nanoparticle research is to investigate their unique properties not seen in bulk materials or small molecules. In this chapter, we focus on a new class of gold nanoparticles (often called nanoclusters) that possess atomic precision (as opposed to conventional nanoparticles with a size distribution). The synthetic methods for obtaining atomically precise thiolate-protected gold nanocluters are first discussed, followed by the anatomy of the X-ray crystal structures of gold nanoclusters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRef Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRef
2.
go back to reference Jin R (2010) Quantum sized thiolate-protected gold nanoclusters. Nanoscale 2:343–362CrossRef Jin R (2010) Quantum sized thiolate-protected gold nanoclusters. Nanoscale 2:343–362CrossRef
3.
go back to reference Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470CrossRef Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470CrossRef
4.
go back to reference Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270CrossRef Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270CrossRef
5.
go back to reference Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215CrossRef Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215CrossRef
6.
go back to reference Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A 113:4281–4284CrossRef Qian H, Zhu M, Andersen UN, Jin R (2009) Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. J Phys Chem A 113:4281–4284CrossRef
7.
go back to reference Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1Å resolution. Science 318:430–433CrossRef Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1Å resolution. Science 318:430–433CrossRef
8.
go back to reference Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755CrossRef Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755CrossRef
9.
go back to reference Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRef Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885CrossRef
10.
go back to reference Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281CrossRef Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281CrossRef
11.
go back to reference Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118CrossRef Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118CrossRef
12.
go back to reference Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-Gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013CrossRef Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-Gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013CrossRef
13.
go back to reference Zhu M, Eckenhoff WT, Pintauer T, Jin R (2008) Conversion of anionic [Au25(SCH2CH2Ph)18]− cluster to charge neutral cluster via air oxidation. J Phys Chem C 112:14221–14224CrossRef Zhu M, Eckenhoff WT, Pintauer T, Jin R (2008) Conversion of anionic [Au25(SCH2CH2Ph)18] cluster to charge neutral cluster via air oxidation. J Phys Chem C 112:14221–14224CrossRef
14.
go back to reference Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542CrossRef Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542CrossRef
15.
go back to reference Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942CrossRef Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942CrossRef
16.
go back to reference McPartlin M, Mason R, Malatesta L (1969) Novel cluster complexes of gold(0)-gold(I). J Chem Soc D 334–334 McPartlin M, Mason R, Malatesta L (1969) Novel cluster complexes of gold(0)-gold(I). J Chem Soc D 334–334
17.
go back to reference Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 201–202 Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J Chem Soc Chem Commun 201–202
18.
go back to reference Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12Cl6 − a gold cluster of an exceptional size. Chem Ber 114:3634–3642CrossRef Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, Vandervelden WA (1981) Au55[P(C6H5)3]12Cl6 − a gold cluster of an exceptional size. Chem Ber 114:3634–3642CrossRef
19.
go back to reference Teo BK, Shi XB, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745CrossRef Teo BK, Shi XB, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745CrossRef
20.
go back to reference Teo BK, Shi X, Zhang H (1991) Cluster of clusters. structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks. J Am Chem Soc 113:4329–4331CrossRef Teo BK, Shi X, Zhang H (1991) Cluster of clusters. structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks. J Am Chem Soc 113:4329–4331CrossRef
21.
go back to reference Boon KT, Hong MC, Hong Z, Huang DB (1987) Cluster of clusters: structure of the 37-atom cluster [(p-Tol3P)12Au18Ag19Br11]2+ and a novel series of supraclusters based on vertex-sharing icosahedra. Angew Chem Int Ed 26:897–900CrossRef Boon KT, Hong MC, Hong Z, Huang DB (1987) Cluster of clusters: structure of the 37-atom cluster [(p-Tol3P)12Au18Ag19Br11]2+ and a novel series of supraclusters based on vertex-sharing icosahedra. Angew Chem Int Ed 26:897–900CrossRef
22.
go back to reference Teo BK, Shi X, Zhang H (1993) Clusters of clusters. 25. Synthesis and structure of a new [gold-silver]-38-metal-atom cluster [(Ph3P)14Au18Ag20Cl12]Cl2 and its implications with regard to intracavity chemistry on metal cluster surfaces. Inorg Chem 32:3987–3988CrossRef Teo BK, Shi X, Zhang H (1993) Clusters of clusters. 25. Synthesis and structure of a new [gold-silver]-38-metal-atom cluster [(Ph3P)14Au18Ag20Cl12]Cl2 and its implications with regard to intracavity chemistry on metal cluster surfaces. Inorg Chem 32:3987–3988CrossRef
23.
go back to reference Tran NT, Powell DR, Dahl LF (2000) Nanosized Pd145(CO)x(PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew Chem Int Ed 39:4121–4125CrossRef Tran NT, Powell DR, Dahl LF (2000) Nanosized Pd145(CO)x(PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew Chem Int Ed 39:4121–4125CrossRef
24.
go back to reference Tran NT, Dahl LF (2003) Nanosized [Pd69(CO)36(PEt3)18]: metal-core geometry containing a linear assembly of three face-sharing centered Pd33 icosahedra inside of a hexagonal-shaped Pd30 tube. Angew Chem Int Ed 42:3533–3537CrossRef Tran NT, Dahl LF (2003) Nanosized [Pd69(CO)36(PEt3)18]: metal-core geometry containing a linear assembly of three face-sharing centered Pd33 icosahedra inside of a hexagonal-shaped Pd30 tube. Angew Chem Int Ed 42:3533–3537CrossRef
25.
go back to reference Mednikov EG, Ivanov SA, Slovokhotova IV, Dahl LF (2005) Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] clusters based on a hypothetical Pd38 vertex-truncated ν 3 octahedron. Angew Chem Int Ed 44:6848–6854CrossRef Mednikov EG, Ivanov SA, Slovokhotova IV, Dahl LF (2005) Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] clusters based on a hypothetical Pd38 vertex-truncated ν 3 octahedron. Angew Chem Int Ed 44:6848–6854CrossRef
26.
go back to reference Mednikov EG, Dahl LF (2008) Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications. J Am Chem Soc 130:14813–14821CrossRef Mednikov EG, Dahl LF (2008) Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications. J Am Chem Soc 130:14813–14821CrossRef
27.
go back to reference Shichibu Y, Konishi K (2010) HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “Magic-Number” Au13 clusters. Small 6:1216–1220CrossRef Shichibu Y, Konishi K (2010) HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “Magic-Number” Au13 clusters. Small 6:1216–1220CrossRef
28.
go back to reference Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano 5:2989–3002CrossRef Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano 5:2989–3002CrossRef
29.
go back to reference Wan X-K, Lin Z-W, Wang Q-M (2012) Au20 nanocluster protected by hemilabile phosphines. J Am Chem Soc 134:14750–14752CrossRef Wan X-K, Lin Z-W, Wang Q-M (2012) Au20 nanocluster protected by hemilabile phosphines. J Am Chem Soc 134:14750–14752CrossRef
30.
go back to reference Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T (2007) Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2-18): a stepping stone to cluster-assembled materials. J Phys Chem C 111:7845–7847CrossRef Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T (2007) Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2-18): a stepping stone to cluster-assembled materials. J Phys Chem C 111:7845–7847CrossRef
31.
go back to reference Qian H, Eckenhoff WT, Bier ME, Pintauer T, Jin R (2011) Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg Chem 50:10735–10739CrossRef Qian H, Eckenhoff WT, Bier ME, Pintauer T, Jin R (2011) Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg Chem 50:10735–10739CrossRef
32.
go back to reference Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc 134:20286–20289CrossRef Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc 134:20286–20289CrossRef
33.
go back to reference Yang H, Wang Y, Lei J, Shi L, Wu X, Mäkinen V, Lin S, Tang Z, He J, Häkkinen H, Zheng L, Zheng N (2013) Ligand-stabilized Au13Cux (x = 2, 4, 8) bimetallic nanoclusters: ligand engineering to control the exposure of metal sites. J Am Chem Soc 135:9568–9571CrossRef Yang H, Wang Y, Lei J, Shi L, Wu X, Mäkinen V, Lin S, Tang Z, He J, Häkkinen H, Zheng L, Zheng N (2013) Ligand-stabilized Au13Cux (x = 2, 4, 8) bimetallic nanoclusters: ligand engineering to control the exposure of metal sites. J Am Chem Soc 135:9568–9571CrossRef
34.
go back to reference Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802CrossRef Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802CrossRef
35.
go back to reference Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal Gold Molecules. Adv Mater 8:428–433CrossRef Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal Gold Molecules. Adv Mater 8:428–433CrossRef
36.
go back to reference Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRef Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRef
37.
go back to reference Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910CrossRef Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, Garg N (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1:2903–2910CrossRef
38.
go back to reference Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139CrossRef Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139CrossRef
39.
go back to reference Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803CrossRef Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803CrossRef
40.
go back to reference Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9:4083–4087CrossRef Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. Nano Lett 9:4083–4087CrossRef
41.
go back to reference Qian H, Zhu Y, Jin R (2012) Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci U S A 109:696–700CrossRef Qian H, Zhu Y, Jin R (2012) Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc Natl Acad Sci U S A 109:696–700CrossRef
42.
go back to reference Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J Am Chem Soc 127:13464–13465CrossRef Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J Am Chem Soc 127:13464–13465CrossRef
43.
go back to reference Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177CrossRef Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177CrossRef
44.
go back to reference Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873–1876CrossRef Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873–1876CrossRef
45.
go back to reference Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutierrez-Wing C, Ascensio J, Jose-Yacaman MJ (1997) Isolation of smaller nanocrystal au molecules: robust quantum effects in optical spectra. J Phys Chem B 101:7885–7891CrossRef Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutierrez-Wing C, Ascensio J, Jose-Yacaman MJ (1997) Isolation of smaller nanocrystal au molecules: robust quantum effects in optical spectra. J Phys Chem B 101:7885–7891CrossRef
46.
go back to reference Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646CrossRef Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646CrossRef
47.
go back to reference Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au: SR cluster compound. J Phys Chem B 105:8785–8796CrossRef Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL (2001) Properties of a ubiquitous 29 kDa Au: SR cluster compound. J Phys Chem B 105:8785–8796CrossRef
48.
go back to reference Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa Gold:Alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610CrossRef Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa Gold:Alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610CrossRef
49.
go back to reference Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “Missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037CrossRef Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “Missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037CrossRef
50.
go back to reference Qian H, Zhu Y, Jin R (2010) Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J Am Chem Soc 132:4583–4585CrossRef Qian H, Zhu Y, Jin R (2010) Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J Am Chem Soc 132:4583–4585CrossRef
51.
go back to reference Knoppe S, Boudon J, Dolamic I, Dass A, Burgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83:5056–5061CrossRef Knoppe S, Boudon J, Dolamic I, Dass A, Burgi T (2011) Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem 83:5056–5061CrossRef
52.
go back to reference Qian H, Jin R (2011) Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. Chem Comm 47:11462–11464CrossRef Qian H, Jin R (2011) Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. Chem Comm 47:11462–11464CrossRef
53.
go back to reference Negishi Y, Sakamoto C, Ohyama T, Tsukuda T (2012) Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters. J Phys Chem Lett 3:1624–1628CrossRef Negishi Y, Sakamoto C, Ohyama T, Tsukuda T (2012) Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters. J Phys Chem Lett 3:1624–1628CrossRef
54.
go back to reference Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117:504–517CrossRef Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem A 117:504–517CrossRef
55.
go back to reference Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396CrossRef Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396CrossRef
56.
go back to reference Sakai N, Tatsuma T (2010) Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes. Adv Mater 22:3185–3188CrossRef Sakai N, Tatsuma T (2010) Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes. Adv Mater 22:3185–3188CrossRef
57.
go back to reference Sexton JZ, Ackerson CJ (2010) Determination of rigidity of protein bound Au144 clusters by electron cryomicroscopy. J Phys Chem C 114:16037–16042CrossRef Sexton JZ, Ackerson CJ (2010) Determination of rigidity of protein bound Au144 clusters by electron cryomicroscopy. J Phys Chem C 114:16037–16042CrossRef
58.
go back to reference Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, Qian H, Wang H, Jin R (2012) Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small 8:2028–2035CrossRef Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, Qian H, Wang H, Jin R (2012) Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small 8:2028–2035CrossRef
59.
go back to reference Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758CrossRef Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758CrossRef
60.
go back to reference Wu Z, MacDonald M, Chen J, Zhang P, Jin R (2011) Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc 133:9670–9673CrossRef Wu Z, MacDonald M, Chen J, Zhang P, Jin R (2011) Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc 133:9670–9673CrossRef
61.
go back to reference Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) On the structure of thiolate-protected Au25. J Am Chem Soc 130:3756–3757CrossRef Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) On the structure of thiolate-protected Au25. J Am Chem Soc 130:3756–3757CrossRef
62.
go back to reference Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626CrossRef Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626CrossRef
63.
go back to reference Liu C, Li G, Pang G, Jin R (2013) Toward understanding the growth mechanism of Au n (SR) m nanoclusters: effect of solvent on cluster size. RSC Adv 3:9778–9784CrossRef Liu C, Li G, Pang G, Jin R (2013) Toward understanding the growth mechanism of Au n (SR) m nanoclusters: effect of solvent on cluster size. RSC Adv 3:9778–9784CrossRef
64.
go back to reference Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131:13604–13605CrossRef Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. J Am Chem Soc 131:13604–13605CrossRef
65.
go back to reference Qian H, Liu C, Jin R (2012) Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product. Sci China Chem 55:2359–2365CrossRef Qian H, Liu C, Jin R (2012) Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product. Sci China Chem 55:2359–2365CrossRef
66.
go back to reference Stellwagen D, Weber A, Bovenkamp GL, Jin R, Bitter JH, Kumar CSSR (2012) Ligand control in thiol stabilized Au38 clusters. RSC Adv 2:2276–2283CrossRef Stellwagen D, Weber A, Bovenkamp GL, Jin R, Bitter JH, Kumar CSSR (2012) Ligand control in thiol stabilized Au38 clusters. RSC Adv 2:2276–2283CrossRef
67.
go back to reference Qian H, Jin R (2011) Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217CrossRef Qian H, Jin R (2011) Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217CrossRef
68.
go back to reference Zhu M, Qian H, Jin R (2009) Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J Am Chem Soc 131:7220–7221CrossRef Zhu M, Qian H, Jin R (2009) Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J Am Chem Soc 131:7220–7221CrossRef
69.
go back to reference Zhu M, Qian H, Jin R (2010) Thiolate-protected Au24(SC2H4Ph)20 nanoclusters: superatoms or not? J Phys Chem Lett 1:1003–1007CrossRef Zhu M, Qian H, Jin R (2010) Thiolate-protected Au24(SC2H4Ph)20 nanoclusters: superatoms or not? J Phys Chem Lett 1:1003–1007CrossRef
70.
go back to reference Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell DA, Kornberg RD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2983CrossRef Levi-Kalisman Y, Jadzinsky PD, Kalisman N, Tsunoyama H, Tsukuda T, Bushnell DA, Kornberg RD (2011) Synthesis and characterization of Au102(p-MBA)44 nanoparticles. J Am Chem Soc 133:2976–2983CrossRef
71.
go back to reference Xu Q, Wang S, Liu Z, Xu G, Meng X, Zhu M (2013) Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale 5:1176–1182CrossRef Xu Q, Wang S, Liu Z, Xu G, Meng X, Zhu M (2013) Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale 5:1176–1182CrossRef
72.
go back to reference Yu Y, Chen X, Yao Q, Yu Y, Yan N, Xie J (2013) Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem Mater 25:946–952CrossRef Yu Y, Chen X, Yao Q, Yu Y, Yan N, Xie J (2013) Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem Mater 25:946–952CrossRef
73.
go back to reference Ghosh A, Udayabhaskararao T, Pradeep T (1997–2002) One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase. J Phys Chem Lett 2012:3 Ghosh A, Udayabhaskararao T, Pradeep T (1997–2002) One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase. J Phys Chem Lett 2012:3
74.
go back to reference Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145CrossRef Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–6145CrossRef
75.
76.
go back to reference Jiang D, Tiago ML, Luo W, Dai S (2008) The “Staple” Motif: a key to stability of thiolate-protected gold nanoclusters. J Am Chem Soc 130:2777–2779CrossRef Jiang D, Tiago ML, Luo W, Dai S (2008) The “Staple” Motif: a key to stability of thiolate-protected gold nanoclusters. J Am Chem Soc 130:2777–2779CrossRef
77.
go back to reference Pei Y, Gao Y, Zeng XC (2008) Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J Am Chem Soc 130:7830–7832CrossRef Pei Y, Gao Y, Zeng XC (2008) Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J Am Chem Soc 130:7830–7832CrossRef
78.
go back to reference Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132:8210–8218CrossRef Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J Am Chem Soc 132:8210–8218CrossRef
79.
go back to reference Jiang D-E, Overbury SH, Dai S (2013) Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J Am Chem Soc 135:8786–8789CrossRef Jiang D-E, Overbury SH, Dai S (2013) Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J Am Chem Soc 135:8786–8789CrossRef
80.
go back to reference Pei Y, Gao Y, Shao N, Zeng XC (2009) Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple Motif. J Am Chem Soc 131:13619–13621CrossRef Pei Y, Gao Y, Shao N, Zeng XC (2009) Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple Motif. J Am Chem Soc 131:13619–13621CrossRef
81.
go back to reference Iwasa T, Nobusada K (2007) Theoretical investigation of optimized structures of thiolated gold cluster [Au25(SCH3)18]+. J Phys Chem C 111:45–49CrossRef Iwasa T, Nobusada K (2007) Theoretical investigation of optimized structures of thiolated gold cluster [Au25(SCH3)18]+. J Phys Chem C 111:45–49CrossRef
82.
go back to reference Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584–6593CrossRef Jin R, Zhu Y, Qian H (2011) Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 17:6584–6593CrossRef
83.
go back to reference Venzo A, Antonello S, Gascón JA, Guryanov I, Leapman RD, Perera NV, Sousa A, Zamuner M, Zanella A, Maran F (2011) Effect of the charge state (z = −1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph]18 z clusters. Anal Chem 83:6355–6362CrossRef Venzo A, Antonello S, Gascón JA, Guryanov I, Leapman RD, Perera NV, Sousa A, Zamuner M, Zanella A, Maran F (2011) Effect of the charge state (z = −1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25[S(CH2)2Ph]18 z clusters. Anal Chem 83:6355–6362CrossRef
84.
go back to reference Liu Z, Zhu M, Meng X, Xu G, Jin R (2011) Electron transfer between [Au25(SC2H4Ph)18]−TOA+ and oxoammonium cations. J Phys Chem Lett 2:2104–2109CrossRef Liu Z, Zhu M, Meng X, Xu G, Jin R (2011) Electron transfer between [Au25(SC2H4Ph)18]TOA+ and oxoammonium cations. J Phys Chem Lett 2:2104–2109CrossRef
85.
go back to reference Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J Am Chem Soc 129:11322–11323CrossRef Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J Am Chem Soc 129:11322–11323CrossRef
86.
go back to reference Parker JF, Choi J-P, Wang W, Murray RW (2008) Electron self-exchange dynamics of the nanoparticle couple [Au25(SC2Ph)18]0/1− by nuclear magnetic resonance line-broadening. J Phys Chem C 112:13976–13981CrossRef Parker JF, Choi J-P, Wang W, Murray RW (2008) Electron self-exchange dynamics of the nanoparticle couple [Au25(SC2Ph)18]0/1− by nuclear magnetic resonance line-broadening. J Phys Chem C 112:13976–13981CrossRef
87.
go back to reference Kwak K, Lee D (2012) Electrochemical characterization of water-soluble Au25 nanoclusters enabled by phase-transfer reaction. J Phys Chem Lett 3:2476–2481CrossRef Kwak K, Lee D (2012) Electrochemical characterization of water-soluble Au25 nanoclusters enabled by phase-transfer reaction. J Phys Chem Lett 3:2476–2481CrossRef
88.
go back to reference Swanick KN, Hesari M, Workentin MS, Ding Z (2012) Interrogating near-infrared electrogenerated chemiluminescence of Au25(SC2H4Ph)18 + clusters. J Am Chem Soc 134:15205–15208CrossRef Swanick KN, Hesari M, Workentin MS, Ding Z (2012) Interrogating near-infrared electrogenerated chemiluminescence of Au25(SC2H4Ph)18 + clusters. J Am Chem Soc 134:15205–15208CrossRef
89.
go back to reference Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490–2492CrossRef Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R (2009) Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc 131:2490–2492CrossRef
90.
go back to reference Marks L (1983) Modified Wulff constructions for twinned particles. J Cryst Growth 61:556–566CrossRef Marks L (1983) Modified Wulff constructions for twinned particles. J Cryst Growth 61:556–566CrossRef
91.
go back to reference Marks L (1984) Surface structure and energetics of multiply twinned particles. Philos Mag A 49:81–93CrossRef Marks L (1984) Surface structure and energetics of multiply twinned particles. Philos Mag A 49:81–93CrossRef
92.
go back to reference Mednikov EG, Dahl LF (2008) Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences. Small 4:534–537CrossRef Mednikov EG, Dahl LF (2008) Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences. Small 4:534–537CrossRef
Metadata
Title
Gold Nanoclusters: Size-Controlled Synthesis and Crystal Structures
Authors
Chenjie Zeng
Rongchao Jin
Copyright Year
2014
DOI
https://doi.org/10.1007/430_2014_146

Premium Partners