Skip to main content
Top
Published in: Meccanica 12/2016

31-10-2016 | 50th Anniversary of Meccanica

GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials

Authors: Parisa Khodabakhshi, J. N. Reddy, Arun Srinivasa

Published in: Meccanica | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper the conventional finite element method for linear elastic response is reformulated in such a way that makes it favorable for the study of damage and fracture in brittle materials. This modified finite element framework is based on the idea presented by Reddy and Srinivasa (Finite Elem Anal Des 104:35–40, 2015), where it was shown that for discretized hyperelastic materials, the magnitude of the nodal forces (in the discretized form) can be written in terms of the axial strains along the edges of the elements and that the equilibrium equations at each node can be written in terms of the forces along the edges alone. Using this concept and by exploiting the fact that FEM discretization leads to an undirected cyclic graph with nodes and edges whose connectivity is related to the elements of the FEM, one can reformulate the displacement-based finite element framework with constant strain triangular elements to represent the continuum as a nonlocal network. The network representation of the continuum is “nonlocal” in the sense that the force along any given edge doesn’t only depend on the strain along that edge, but on a collective behavior of the strains along the edges neighboring the edge of interest. This method is named as GraFEA (for graph-based finite element analysis). Damage is introduced using a nonlocal damage criterion originating from the idea of the weakest links statistics proposed by Lin, Evans, and Ritchie (J Mech Phys Solids 34(5):477–497, 1986). This idea, which was very successful in studying cleavage fracture of mild steel at very low temperatures, can be used to impose a damage criterion to the nolocal network. GraFEA has the major advantage that one can impose an edge-based failure criterion using the weakest link thoery directly on the discretized body, and potentially simulating crack initiation, crack growth, and branching without the need for extra enrichment functions (as with other methods). The simplicity of the method and the fact that it is based on conventional finite element method makes it suitable for integration into commercial softwares. The governing equations for this approach are derived and applied to two simple crack growth simulations (as a proof of concept) in two-dimensional regions with a hole.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
An edge is any line between two individual nodes of an element.
 
2
Distmesh mesh generator. Available from http://​persson.​berkeley.​edu/​distmesh.
 
3
Symmetry with respect to the vertical axis.
 
Literature
1.
go back to reference Barenblatt GI (1959) Concerning equilibrium cracks forming during brittle fracture. The stability of isolated cracks. Relationships with energetic theories. J Appl Math Mech 23(5):1273–1282MathSciNetCrossRefMATH Barenblatt GI (1959) Concerning equilibrium cracks forming during brittle fracture. The stability of isolated cracks. Relationships with energetic theories. J Appl Math Mech 23(5):1273–1282MathSciNetCrossRefMATH
2.
go back to reference Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(C):55–129MathSciNetCrossRef Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(C):55–129MathSciNetCrossRef
3.
go back to reference Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRef Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149CrossRef
4.
go back to reference Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620MathSciNetCrossRefMATH Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620MathSciNetCrossRefMATH
5.
go back to reference Brace WF (1960) An extension of the Griffith theory of fracture to rocks. J Geophys Res 65(10):3477–3480ADSCrossRef Brace WF (1960) An extension of the Griffith theory of fracture to rocks. J Geophys Res 65(10):3477–3480ADSCrossRef
6.
go back to reference Chaboche JL (1988a) Continuum damage mechanics: part I–general concepts. J Appl Mech 55:59–64CrossRef Chaboche JL (1988a) Continuum damage mechanics: part I–general concepts. J Appl Mech 55:59–64CrossRef
7.
go back to reference Chaboche JL (1988b) Continuum damage mechanics: part II–damage growth, crack initiation, and crack growth. J Appl Mech 55:65–72CrossRef Chaboche JL (1988b) Continuum damage mechanics: part II–damage growth, crack initiation, and crack growth. J Appl Mech 55:65–72CrossRef
8.
go back to reference Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104ADSCrossRef Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104ADSCrossRef
9.
go back to reference Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MathSciNetMATH Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MathSciNetMATH
10.
go back to reference Griffith AA (1921) The phenomena of rupture and flow in solids. Philo Trans R Soc Lond Ser A 221:163–198ADSCrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Philo Trans R Soc Lond Ser A 221:163–198ADSCrossRef
11.
go back to reference Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1):229–244CrossRefMATH Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1):229–244CrossRefMATH
12.
go back to reference Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168CrossRef Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168CrossRef
13.
go back to reference Irwin GR, Washington DC (1957) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364 Irwin GR, Washington DC (1957) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364
14.
go back to reference Irwin GR, Wells AA (1965) A continuum-mechanics view of crack propagation. Metall Rev 10(1):223–270CrossRef Irwin GR, Wells AA (1965) A continuum-mechanics view of crack propagation. Metall Rev 10(1):223–270CrossRef
15.
go back to reference Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31 Kachanov LM (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31
16.
go back to reference Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90(2):141–151CrossRef Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90(2):141–151CrossRef
17.
go back to reference Kilic B, Madenci E (2010) Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 5(5):707–733CrossRef Kilic B, Madenci E (2010) Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 5(5):707–733CrossRef
18.
go back to reference Kosteski L, Barrios D’Ambra R, Iturrioz I (2012) Crack propagation in elastic solids using the truss-like discrete element method. Int J Fract 174(2):139–161CrossRef Kosteski L, Barrios D’Ambra R, Iturrioz I (2012) Crack propagation in elastic solids using the truss-like discrete element method. Int J Fract 174(2):139–161CrossRef
19.
go back to reference Kosteski L, Iturrioz I, Batista RG, Cisilino AP (2011) The truss-like discrete element method in fracture and damage mechanics. Eng Comput 28(6):765–787CrossRefMATH Kosteski L, Iturrioz I, Batista RG, Cisilino AP (2011) The truss-like discrete element method in fracture and damage mechanics. Eng Comput 28(6):765–787CrossRefMATH
20.
go back to reference Krajcinovic D, Fonseka GU (1981) The continuous damage theory of brittle materials, part 1: general theory. J Appl Mech 48(4):809–815CrossRefMATH Krajcinovic D, Fonseka GU (1981) The continuous damage theory of brittle materials, part 1: general theory. J Appl Mech 48(4):809–815CrossRefMATH
21.
go back to reference Lin T, Evans AG, Ritchie RO (1986) A statistical model of brittle fracture by transgranular cleavage. J Mech Phys Solids 34(5):477–497ADSCrossRef Lin T, Evans AG, Ritchie RO (1986) A statistical model of brittle fracture by transgranular cleavage. J Mech Phys Solids 34(5):477–497ADSCrossRef
22.
go back to reference Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, MineolaMATH Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, MineolaMATH
23.
24.
go back to reference Marshall JS, Naghdi PM, Srinivasa AR (1991) A macroscopic theory of microcrack growth in brittle materials. Philo Trans R Soc Lond A Math Phys Eng Sci 335(1639):455–485ADSCrossRefMATH Marshall JS, Naghdi PM, Srinivasa AR (1991) A macroscopic theory of microcrack growth in brittle materials. Philo Trans R Soc Lond A Math Phys Eng Sci 335(1639):455–485ADSCrossRefMATH
25.
go back to reference Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity model for peridynamics. SANDIA Report 3166 Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity model for peridynamics. SANDIA Report 3166
26.
go back to reference Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef
27.
go back to reference Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150CrossRefMATH
28.
go back to reference Needleman A (2014) Some issues in cohesive surface modeling. Procedia IUTAM 10:221–246CrossRef Needleman A (2014) Some issues in cohesive surface modeling. Procedia IUTAM 10:221–246CrossRef
30.
go back to reference Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802CrossRef
31.
go back to reference Reddy JN (2006) An introduction to the finite element method. McGraw Hill, New York Reddy JN (2006) An introduction to the finite element method. McGraw Hill, New York
32.
go back to reference Reddy JN, Srinivasa AR (2015) On the force−displacement characteristics of finite elements for elasticity and related problems. Finite Elem Anal Des 104:35–40CrossRef Reddy JN, Srinivasa AR (2015) On the force−displacement characteristics of finite elements for elasticity and related problems. Finite Elem Anal Des 104:35–40CrossRef
33.
go back to reference Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local gurson-based ductile damage and failure modelling at large deformation. Eur J Mech A Solids 22(6):779–792CrossRefMATH Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local gurson-based ductile damage and failure modelling at large deformation. Eur J Mech A Solids 22(6):779–792CrossRefMATH
34.
go back to reference Ritchie R, Knott J, Rice J (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21(6):395–410ADSCrossRef Ritchie R, Knott J, Rice J (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21(6):395–410ADSCrossRef
35.
go back to reference Schlangen E, Van Mier JGM (1992) Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct 25(9):534–542CrossRef Schlangen E, Van Mier JGM (1992) Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct 25(9):534–542CrossRef
37.
go back to reference Tada H, Paris PC, Irwin GR (1973) The stress analysis of cracks. Del Research Corp, Hellertown Tada H, Paris PC, Irwin GR (1973) The stress analysis of cracks. Del Research Corp, Hellertown
38.
go back to reference Talreja R (1985) A continuum mechanics characterization of damage in composite materials. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. Vol 399, The Royal Society, pp 195–216 Talreja R (1985) A continuum mechanics characterization of damage in composite materials. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. Vol 399, The Royal Society, pp 195–216
39.
40.
go back to reference Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21(3):187–194CrossRef Xu J, Askari A, Weckner O, Silling S (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21(3):187–194CrossRef
41.
go back to reference Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434ADSCrossRefMATH Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434ADSCrossRefMATH
42.
go back to reference Yip M, Li Z, Liao B-S, Bolander JE (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140(1–4):113–124CrossRefMATH Yip M, Li Z, Liao B-S, Bolander JE (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140(1–4):113–124CrossRefMATH
Metadata
Title
GraFEA: a graph-based finite element approach for the study of damage and fracture in brittle materials
Authors
Parisa Khodabakhshi
J. N. Reddy
Arun Srinivasa
Publication date
31-10-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 12/2016
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0560-6

Other articles of this Issue 12/2016

Meccanica 12/2016 Go to the issue

50th Anniversary of Meccanica

Non-smooth engineering dynamics

Premium Partners