Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2009

01-11-2009 | Review

Growth and fabrication issues of GaSb-based detectors

Authors: Farseem M. Mohammedy, M. Jamal Deen

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2009

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Antimony-based semiconducting materials are of great interest to the research and technology development communities for mid- and long-infrared applications. In particular, the antimony-based detector is a key component in advanced high-speed and low-noise optical receiver systems. However, the growth and fabrication of antimony-based detectors face several challenges, of which, the most important is the reduction of surface leakage which severely limits their performance. In this paper, a review of the current growth techniques (liquid phase epitaxy LPE, chemical vapor deposition CVD or molecular beam epitaxy MBE) for antimony-based devices is presented. The metamorphic growth technique is also discussed because it allows a device designer to use any conventional starting wafer and then to subsequently grow layers of arbitrary composition of antimony-containing alloys that allows for changing the detection wavelength of interest. However, since surface leakage severely limits the detector’s performance, then suitable techniques to passivate and neutralize the reactive GaSb-surface, and also to finally encapsulate the detectors are required. This reduction of the leakage currents will lead to detectors having higher detectivity and efficiency. Further, avalanche photodetectors with gain can be designed using antimonide-based materials if the processing steps can be optimized. Therefore, in this paper, we also present an up-to-date review of the available techniques for reducing surface leakage. This includes neutralizing the exposed side-walls using sulfur-passivation and/or by depositing another semiconducting layer using either MBE-regrowth or chemical deposition. Finally, antimony-based detectors are reviewed and their detectivity, zero-bias-resistance-area product and surface resistivity are compared.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Kroemer, The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review, Physica E 20, 196 (2004) H. Kroemer, The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review, Physica E 20, 196 (2004)
2.
go back to reference P.S. Dutta, H.L. Bhat and V. Kumar, The physics and technology of gallium antimonide: an emerging optoelectronic material, J. Appl. Phys. 81, 5821 (1997) P.S. Dutta, H.L. Bhat and V. Kumar, The physics and technology of gallium antimonide: an emerging optoelectronic material, J. Appl. Phys. 81, 5821 (1997)
3.
go back to reference M.O. Manasreh (ed.), Antimonide-related Strained-Layer Heterostructures, Optoelectronic Properties of Semiconductors and Superlattices, vol. 3 (Gordon and Breach Science Publishers, Amsterdam, 1997) M.O. Manasreh (ed.), Antimonide-related Strained-Layer Heterostructures, Optoelectronic Properties of Semiconductors and Superlattices, vol. 3 (Gordon and Breach Science Publishers, Amsterdam, 1997)
4.
go back to reference B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa and M.G. Ancona, Antimonide-based compound semiconductors for electronic devices: a review, Solid-State Electron. 49, 1875 (2005) B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa and M.G. Ancona, Antimonide-based compound semiconductors for electronic devices: a review, Solid-State Electron. 49, 1875 (2005)
5.
go back to reference T. Whitaker, Compound Semiconductor (January and September, 2004) T. Whitaker, Compound Semiconductor (January and September, 2004)
6.
go back to reference J. Gowar, Optical Communication Systems (Prentice Hall, London, 1984), pp. 71–89 J. Gowar, Optical Communication Systems (Prentice Hall, London, 1984), pp. 71–89
7.
go back to reference J.M. Senior, Optical Fiber Communications: Principles and Practice, 2nd edn. (Prentice Hall, UK, 1992), pp. 84–153 J.M. Senior, Optical Fiber Communications: Principles and Practice, 2nd edn. (Prentice Hall, UK, 1992), pp. 84–153
8.
go back to reference G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley Interscience, NY, 2002) G.P. Agrawal, Fiber-Optic Communication Systems, 3rd edn. (Wiley Interscience, NY, 2002)
9.
go back to reference I.D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic Press, London, 1991), pp. xi–xiv I.D. Aggarwal, G. Lu, Fluoride Glass Fiber Optics (Academic Press, London, 1991), pp. xi–xiv
10.
go back to reference J.A. Harrington, Infrared Fibers and their Applications (SPIE Press, 2004), pp. 5–7 J.A. Harrington, Infrared Fibers and their Applications (SPIE Press, 2004), pp. 5–7
11.
go back to reference A. Rogalski, Infrared detectors: status and trends, Progress Quantum Electron. 27, 59–210 (2003) A. Rogalski, Infrared detectors: status and trends, Progress Quantum Electron. 27, 59–210 (2003)
12.
go back to reference S. Campion (ed.), Release No. 01-57, Goddard Space Flight Center, Greenbelt, MD, June 4 (2001) S. Campion (ed.), Release No. 01-57, Goddard Space Flight Center, Greenbelt, MD, June 4 (2001)
13.
15.
go back to reference S.D. Humphries, K.S. Repasky, P. Nachman, J.A. Shaw, J.L. Carlsten, L. H. Spangler, Atmospheric carbon dioxide measurements using a tunable laser based system, in 6th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, Pennsylvania (2007) S.D. Humphries, K.S. Repasky, P. Nachman, J.A. Shaw, J.L. Carlsten, L. H. Spangler, Atmospheric carbon dioxide measurements using a tunable laser based system, in 6th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, Pennsylvania (2007)
16.
go back to reference P. Norton, Infrared sensors in spacecraft that monitor planet Earth, Opto-Electron. Rev. 16, 105–117 (2008) P. Norton, Infrared sensors in spacecraft that monitor planet Earth, Opto-Electron. Rev. 16, 105–117 (2008)
17.
go back to reference E. Hall, R.L. Naone, J.E. English, H.R. Blank, J. Champlain and H. Kroemer, Operational experience with a valved antimony cracker source for use in molecular beam epitaxy, J. Vac. Sci. Technol. B 16, 2660–2664 (1998) E. Hall, R.L. Naone, J.E. English, H.R. Blank, J. Champlain and H. Kroemer, Operational experience with a valved antimony cracker source for use in molecular beam epitaxy, J. Vac. Sci. Technol. B 16, 2660–2664 (1998)
18.
go back to reference P.S. Dutta, V. Prasad and H.L. Bhat, Carrier compensation and scattering mechanisms in p-GaSb, J. Appl. Phys. 80, 2847–2853 (1996) P.S. Dutta, V. Prasad and H.L. Bhat, Carrier compensation and scattering mechanisms in p-GaSb, J. Appl. Phys. 80, 2847–2853 (1996)
19.
go back to reference M. Hakala, M.J. Puska and R.M. Nieminen, Native defects and self-diffusion in GaSb, J. Appl. Phys. 91, 4988–4994 (2002) M. Hakala, M.J. Puska and R.M. Nieminen, Native defects and self-diffusion in GaSb, J. Appl. Phys. 91, 4988–4994 (2002)
20.
go back to reference Q. Xie, J.E. Van Nostrand, R.L. Jones, J. Sizelove, D.C. Look, Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2, J. Crys. Growth 207, 255–265 (1999) Q. Xie, J.E. Van Nostrand, R.L. Jones, J. Sizelove, D.C. Look, Electrical and optical properties of undoped GaSb grown by molecular beam epitaxy using cracked Sb1 and Sb2, J. Crys. Growth 207, 255–265 (1999)
21.
go back to reference J.F. Chen and A.Y. Cho, Tellurium doping study of GaSb grown by molecular beam epitaxy using SnTe, J. Crys. Growth 111, 619–622 (1991) J.F. Chen and A.Y. Cho, Tellurium doping study of GaSb grown by molecular beam epitaxy using SnTe, J. Crys. Growth 111, 619–622 (1991)
22.
go back to reference J.G. Cederberg and R.M. Biefeld, The growth of n-type GaSb by metal-organic chemical vapour deposition: effects of two-band conduction on carrier concentrations and donor activation, Semicond. Sci. Technol. 19, 953–958 (2004) J.G. Cederberg and R.M. Biefeld, The growth of n-type GaSb by metal-organic chemical vapour deposition: effects of two-band conduction on carrier concentrations and donor activation, Semicond. Sci. Technol. 19, 953–958 (2004)
23.
go back to reference W.E. Hoke, P.S. Lyman, C.S. Whelan, J.J. Mosca, A. Torabi, K.L. Chang, K.C. Hsieh, Growth and characterization of metamorphic Inx(AlGa)1 − x As/In x Ga1 – x As high electron mobility transistor material and devices with x = 0.3-0.4, J. Vac. Sci. Technol. B 18, 1638–1641 (2000) W.E. Hoke, P.S. Lyman, C.S. Whelan, J.J. Mosca, A. Torabi, K.L. Chang, K.C. Hsieh, Growth and characterization of metamorphic Inx(AlGa)1 − x As/In x Ga1 – x As high electron mobility transistor material and devices with x = 0.3-0.4, J. Vac. Sci. Technol. B 18, 1638–1641 (2000)
24.
go back to reference D. Lubyshev, W.K. Liu, T.R. Stewart, A.B. Cornfeld, X.-M. Fang, X. Xu, P. Specht, C. Kisielowski, M. Naidenkova, M.S. Goorsky, C. Whelan, W.E. Hoke, P.F. Marsh, J.M. Millunchick, S.P. Svensson, Strain relaxation and dislocation filtering in metamorophic high electron mobility transistor structures grown on GaAs substrates, J. Vac. Sci. Technol. B 19, 1510–1514 (2001) D. Lubyshev, W.K. Liu, T.R. Stewart, A.B. Cornfeld, X.-M. Fang, X. Xu, P. Specht, C. Kisielowski, M. Naidenkova, M.S. Goorsky, C. Whelan, W.E. Hoke, P.F. Marsh, J.M. Millunchick, S.P. Svensson, Strain relaxation and dislocation filtering in metamorophic high electron mobility transistor structures grown on GaAs substrates, J. Vac. Sci. Technol. B 19, 1510–1514 (2001)
25.
go back to reference J.-H. Jang, G. Cueva, W.E. Hoke, P.J. Lemonias, P. Fay, I. Adesida, Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction P-i-N photodiodes, J. Lightwave Technol. 20, 507–514 (2002) J.-H. Jang, G. Cueva, W.E. Hoke, P.J. Lemonias, P. Fay, I. Adesida, Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction P-i-N photodiodes, J. Lightwave Technol. 20, 507–514 (2002)
26.
go back to reference W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, S.M. Lardizabal, Y. Zhang, J.H. Jang, I. Adesida, C. Xu, K.C. Hsieh, Properties of metamorphic materials and device structures on GaAs substrates, J. Crys. Growth 251, 803–810 (2003) W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, S.M. Lardizabal, Y. Zhang, J.H. Jang, I. Adesida, C. Xu, K.C. Hsieh, Properties of metamorphic materials and device structures on GaAs substrates, J. Crys. Growth 251, 803–810 (2003)
27.
go back to reference Y. Zhang, C.S. Whelan, R. Leoni III, P.F. Marsh, W.E. Hoke, J. B. Hunt, C.M. Laighton, T.E. Kazior, 40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology, IEEE Electron. Dev. Lett. 24, 529–531 (2003) Y. Zhang, C.S. Whelan, R. Leoni III, P.F. Marsh, W.E. Hoke, J. B. Hunt, C.M. Laighton, T.E. Kazior, 40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology, IEEE Electron. Dev. Lett. 24, 529–531 (2003)
28.
go back to reference W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, S.M. Lardizabal, Y. Zhang, J.H. Jang, I. Adesida, C. Xu, K.C. Hsieh, Properties of metamorphic materials and device structures on GaAs substrates, J. Crys. Growth 251, 804–810 (2003) W.E. Hoke, T.D. Kennedy, A. Torabi, C.S. Whelan, P.F. Marsh, R.E. Leoni, S.M. Lardizabal, Y. Zhang, J.H. Jang, I. Adesida, C. Xu, K.C. Hsieh, Properties of metamorphic materials and device structures on GaAs substrates, J. Crys. Growth 251, 804–810 (2003)
29.
go back to reference F.M. Mohammedy, O. Hulko, B.J. Robinson, D.A. Thompson, M.J. Deen and J.G. Simmons, Growth and characterization of GaAsSb metamorphic samples on an InP substrate, J. Vac. Sci. Technol. A 24, 587–590 (2006) F.M. Mohammedy, O. Hulko, B.J. Robinson, D.A. Thompson, M.J. Deen and J.G. Simmons, Growth and characterization of GaAsSb metamorphic samples on an InP substrate, J. Vac. Sci. Technol. A 24, 587–590 (2006)
30.
go back to reference W.E. Hoke, R.E. Leoni, C.S. Whelan, T.D. Kennedy, A. Torabi, P.F. Marsh, Y. Zhang, C. Xu, K.C. Hsieh, Material properties and performance of metamorphic optoelectronic integrated circuits grown by molecular beam epitaxy on GaAs substrates, J. Vac. Sci. Technol. B 22, 1554–1557 (2004) W.E. Hoke, R.E. Leoni, C.S. Whelan, T.D. Kennedy, A. Torabi, P.F. Marsh, Y. Zhang, C. Xu, K.C. Hsieh, Material properties and performance of metamorphic optoelectronic integrated circuits grown by molecular beam epitaxy on GaAs substrates, J. Vac. Sci. Technol. B 22, 1554–1557 (2004)
31.
go back to reference W.E. Hoke, P.J. Lemonias, J.J. Mosca, P.S. Lyman, A. Torabi, P.F. Marsh, R.A. McTaggart, S.M. Lardizabal, K. Hetzler, Molecular beam epitaxy growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates, J. Vac. Sci. Technol. B 17, 1131–1135 (1999) W.E. Hoke, P.J. Lemonias, J.J. Mosca, P.S. Lyman, A. Torabi, P.F. Marsh, R.A. McTaggart, S.M. Lardizabal, K. Hetzler, Molecular beam epitaxy growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates, J. Vac. Sci. Technol. B 17, 1131–1135 (1999)
32.
go back to reference Y.M. Kim, M.J.W. Rodwell, A.C. Gossard, Thermal characteristics of InP, InAlAs, and AlGaAsSb metamorphic buffer layers used in In0.52Al0.48As/In0.53Ga0.47As Heterojunction Bipolar Transistors grown on GaAs substrates, J. Electron. Mater. 31, 196–199 (2002) Y.M. Kim, M.J.W. Rodwell, A.C. Gossard, Thermal characteristics of InP, InAlAs, and AlGaAsSb metamorphic buffer layers used in In0.52Al0.48As/In0.53Ga0.47As Heterojunction Bipolar Transistors grown on GaAs substrates, J. Electron. Mater. 31, 196–199 (2002)
33.
go back to reference F.M. Mohammedy, O. Hulko, B.J. Robinson, D.A. Thompson and M.J. Deen, Effect of growth temperature on InGaSb metamorphic layers and the fabrication of InGaSb p-i-n diodes, J. Vac. Sci. Technol. B 26, 636–642 (2008) F.M. Mohammedy, O. Hulko, B.J. Robinson, D.A. Thompson and M.J. Deen, Effect of growth temperature on InGaSb metamorphic layers and the fabrication of InGaSb p-i-n diodes, J. Vac. Sci. Technol. B 26, 636–642 (2008)
34.
go back to reference R. Clawson, Guide to references on III-V semiconductor chemical etching, Mater. Sci. Eng. 31, 1–438 (2001) R. Clawson, Guide to references on III-V semiconductor chemical etching, Mater. Sci. Eng. 31, 1–438 (2001)
35.
go back to reference O. Dier, C. Lin, M. Grau and M.C. Amann, Selective and non-selective wet-chemical etchants for GaSb-based materials, Semicond. Sci. Technol. 19, 1250–53 (2004) O. Dier, C. Lin, M. Grau and M.C. Amann, Selective and non-selective wet-chemical etchants for GaSb-based materials, Semicond. Sci. Technol. 19, 1250–53 (2004)
36.
go back to reference G.C. DeSalvo, R. Kaspi and C.A. Bozada, Citric acid etching of GaAs1 − x Sb x , Al0.5Ga0.5Sb, and InAs for heterostructure device fabrication, J. Electrochem. Soc. 141, 3526–31 (1994) G.C. DeSalvo, R. Kaspi and C.A. Bozada, Citric acid etching of GaAs1 − x Sb x , Al0.5Ga0.5Sb, and InAs for heterostructure device fabrication, J. Electrochem. Soc. 141, 3526–31 (1994)
37.
go back to reference C.D.W. Wilkinson and M. Rahman, Dry etching and sputtering, Phil. Trans. R. Soc. Lond. A 362, 125–138 (2004) C.D.W. Wilkinson and M. Rahman, Dry etching and sputtering, Phil. Trans. R. Soc. Lond. A 362, 125–138 (2004)
38.
go back to reference J.P. Langer and P.S. Dutta, Electron cyclotron resonance plasma etching of GaSb in Cl2/BCl3/CH4/Ar/H2 at room temperature, J. Vac. Sci. Technol. B 21, 1511–1512 (2003) J.P. Langer and P.S. Dutta, Electron cyclotron resonance plasma etching of GaSb in Cl2/BCl3/CH4/Ar/H2 at room temperature, J. Vac. Sci. Technol. B 21, 1511–1512 (2003)
39.
go back to reference S.S. Ou, Reactive ion etching of GaSb and GaAlSb using SiCl4, J. Vac. Sci. Technol. B 14, 3226–3229 (1996) S.S. Ou, Reactive ion etching of GaSb and GaAlSb using SiCl4, J. Vac. Sci. Technol. B 14, 3226–3229 (1996)
40.
go back to reference A. Semu and P. Silverberg, Methane-hydrogen III-V metal-organic reactive ion etching, Semicond. Sci. Technol. 6, 287–289 (1991) A. Semu and P. Silverberg, Methane-hydrogen III-V metal-organic reactive ion etching, Semicond. Sci. Technol. 6, 287–289 (1991)
41.
go back to reference J.W. Lee, C.R. Abernathy, S.J. Pearton, C. Constantine, R.J. Shul and W.S. Hobson, Etching of Ga-based III-V semiconductors in inductively coupled Ar and CH4/H2-based plasma chemistries, Plasma Sources Sci. Technol. 6, 499–507 (1997) J.W. Lee, C.R. Abernathy, S.J. Pearton, C. Constantine, R.J. Shul and W.S. Hobson, Etching of Ga-based III-V semiconductors in inductively coupled Ar and CH4/H2-based plasma chemistries, Plasma Sources Sci. Technol. 6, 499–507 (1997)
42.
go back to reference D.L. Melville, D.A. Thompson and J.G. Simmons, Effects of electron cyclotron resonance power and cavity dimensions in plasma etching of III–V compounds, J. Electrochem. Soc. 142, 2762–2769 (1995) D.L. Melville, D.A. Thompson and J.G. Simmons, Effects of electron cyclotron resonance power and cavity dimensions in plasma etching of III–V compounds, J. Electrochem. Soc. 142, 2762–2769 (1995)
43.
go back to reference S.J. Pearton, J.W. Lee, E.S. Lambers, C.R. Abernathy, F. Ren, W.S. Hobson and R.J. Shul, Comparison of dry etching techniques for III-V semiconductors in CH4/H2/Ar plasmas, J. Electrochem. Soc. 143, 752–758 (1996) S.J. Pearton, J.W. Lee, E.S. Lambers, C.R. Abernathy, F. Ren, W.S. Hobson and R.J. Shul, Comparison of dry etching techniques for III-V semiconductors in CH4/H2/Ar plasmas, J. Electrochem. Soc. 143, 752–758 (1996)
44.
go back to reference J. Werking, J. Schramm, C. Nguyen, E.L. Hu and H. Kroemer, Methane/hydrogen-based reactive ion etching of InAs, InP, GaAs, and GaSb, Appl. Phys. Lett. 58, 2003 (1991) J. Werking, J. Schramm, C. Nguyen, E.L. Hu and H. Kroemer, Methane/hydrogen-based reactive ion etching of InAs, InP, GaAs, and GaSb, Appl. Phys. Lett. 58, 2003 (1991)
45.
go back to reference J.R. Mileham, J. W. Lee, E.S. Lambers and S.J. Pearton, Dry etching of GaSb and InSb in CH4/H2/Ar, Semicond. Sci. Technol. 12, 338–344 (1997) J.R. Mileham, J. W. Lee, E.S. Lambers and S.J. Pearton, Dry etching of GaSb and InSb in CH4/H2/Ar, Semicond. Sci. Technol. 12, 338–344 (1997)
46.
go back to reference V. Bhagwat, J.P. Langer, I. Bhat, P.S. Dutta, T. Refaat, M.N. Abedin, A comparison of dry plasma and wet chemical etching of GaSb photodiodes. Journal of The Electrochemical Society 151, A728–A730 (2004)CrossRef V. Bhagwat, J.P. Langer, I. Bhat, P.S. Dutta, T. Refaat, M.N. Abedin, A comparison of dry plasma and wet chemical etching of GaSb photodiodes. Journal of The Electrochemical Society 151, A728–A730 (2004)CrossRef
47.
go back to reference F.M. Mohammedy, Z.L. Peng, D.A. Thompson, M.J. Deen, RIE of GaSb with an ECR source using methane/hydrogen chemistry in an argon plasma, J. Electrochem. Soc. 154, H127–H130 (2007) F.M. Mohammedy, Z.L. Peng, D.A. Thompson, M.J. Deen, RIE of GaSb with an ECR source using methane/hydrogen chemistry in an argon plasma, J. Electrochem. Soc. 154, H127–H130 (2007)
48.
go back to reference M. Kodama, Improvement of reverse leakage current characteristics of GaSb and Al0.3Ga0.7Sb/GaSb diodes grown by MBE, Solid-State Electron. 37, 1567–1569 (1994) M. Kodama, Improvement of reverse leakage current characteristics of GaSb and Al0.3Ga0.7Sb/GaSb diodes grown by MBE, Solid-State Electron. 37, 1567–1569 (1994)
49.
go back to reference J.V. Li, S.L. Chuang, O.V. Sulima and J.A. Cox, Passivation of AlGaAsSb/InGaAsSb/GaSb photodiodes using aqueous (NH4)2S solution and polyimide encapsulation, J. Appl. Phys. 97, 104506 (2005) J.V. Li, S.L. Chuang, O.V. Sulima and J.A. Cox, Passivation of AlGaAsSb/InGaAsSb/GaSb photodiodes using aqueous (NH4)2S solution and polyimide encapsulation, J. Appl. Phys. 97, 104506 (2005)
50.
go back to reference P. Dutta, J. Langer, V. Bhagwat, and J. Juneja, Dry etching, surface passivation and capping processes for antimonide based photodetectors, Infrared Technology and Applications XXXI, in Proceedings of SPIE, vol. 5783, pp. 98–105 (2005) P. Dutta, J. Langer, V. Bhagwat, and J. Juneja, Dry etching, surface passivation and capping processes for antimonide based photodetectors, Infrared Technology and Applications XXXI, in Proceedings of SPIE, vol. 5783, pp. 98–105 (2005)
51.
go back to reference E. Papis-Polakowska, Surface treatments of GaSb and related materials for the processing of mid-infrared semiconductor devices, Electron Technol. Internet J. 37/38, 1–34 (2005/2006) http://www.ite.waw.pl/etij/ E. Papis-Polakowska, Surface treatments of GaSb and related materials for the processing of mid-infrared semiconductor devices, Electron Technol. Internet J. 37/38, 1–34 (2005/2006) http://www.​ite.​waw.​pl/​etij/​
52.
go back to reference M. Perotin, P. Coudray, L. Gouskov, H. Luquet, C. Llinares, J.J. Bonnet, L. Soonckindt and B. Lambert, Passivation of GaSb by sulphur treatment, J. Electron. Mater. 23, 7–12 (1994) M. Perotin, P. Coudray, L. Gouskov, H. Luquet, C. Llinares, J.J. Bonnet, L. Soonckindt and B. Lambert, Passivation of GaSb by sulphur treatment, J. Electron. Mater. 23, 7–12 (1994)
53.
go back to reference P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei and M. Razeghi, Passivation of type-II InAs/GaSb double heterostructure, Appl. Phys. Lett. 91, 091112 (2007) P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei and M. Razeghi, Passivation of type-II InAs/GaSb double heterostructure, Appl. Phys. Lett. 91, 091112 (2007)
54.
go back to reference A. Hood, P.Y. Delaunay, D. Hoffman, B.M. Nguyen, Y. Wei and M. Razeghi, Near bulk-limited RoA of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation, Appl. Phys. Lett. 90, 233513 (2007) A. Hood, P.Y. Delaunay, D. Hoffman, B.M. Nguyen, Y. Wei and M. Razeghi, Near bulk-limited RoA of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation, Appl. Phys. Lett. 90, 233513 (2007)
55.
go back to reference A. Hood, M. Razeghi, E.H. Aifer, G.J. Brown, On the performance and surface passivation of type II InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared, Appl. Phys. Lett. 87, 151113(2005) A. Hood, M. Razeghi, E.H. Aifer, G.J. Brown, On the performance and surface passivation of type II InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared, Appl. Phys. Lett. 87, 151113(2005)
56.
go back to reference F.M. Mohammedy, Ph.D. Thesis, Dept. of Electrical and Computer Engineering, McMaster University (2008) F.M. Mohammedy, Ph.D. Thesis, Dept. of Electrical and Computer Engineering, McMaster University (2008)
57.
58.
go back to reference R. Rehm, M. Walther, F. Fuchs, J. Schmitz and J. Fleissner, Passivation of InAs/(GaIn). Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with Al x Ga1 − x AsySb1 − y , Appl. Phys. Lett. 86, 173501 (2005) R. Rehm, M. Walther, F. Fuchs, J. Schmitz and J. Fleissner, Passivation of InAs/(GaIn). Sb short-period superlattice photodiodes with 10 μm cutoff wavelength by epitaxial overgrowth with Al x Ga1 − x AsySb1 − y , Appl. Phys. Lett. 86, 173501 (2005)
59.
go back to reference A. Chavan, A. Chandola, S. Sridaran and P. Dutta, Surface passivation and capping of GaSb photodiode by chemical bath deposition of CdS, J. Appl. Phys. 100, 064512 (2006) A. Chavan, A. Chandola, S. Sridaran and P. Dutta, Surface passivation and capping of GaSb photodiode by chemical bath deposition of CdS, J. Appl. Phys. 100, 064512 (2006)
60.
go back to reference S. Sridaran, A. Chavan, P.S. Dutta, Fabrication and passivation of GaSb photodiodes. J. Cryst. Growth 310, 1590–1594 (2008)CrossRefADS S. Sridaran, A. Chavan, P.S. Dutta, Fabrication and passivation of GaSb photodiodes. J. Cryst. Growth 310, 1590–1594 (2008)CrossRefADS
61.
go back to reference S. Mallick, K. Banerjee, S. Ghosh, E. Plis, J.B. Rodriguez, S. Krishna and C. Grein, Ultralow noise midwave infrared InAs–GaSb strain layer superlattice avalanche photodiode, Appl. Phys. Lett. 91, 241111 (2007) S. Mallick, K. Banerjee, S. Ghosh, E. Plis, J.B. Rodriguez, S. Krishna and C. Grein, Ultralow noise midwave infrared InAs–GaSb strain layer superlattice avalanche photodiode, Appl. Phys. Lett. 91, 241111 (2007)
62.
go back to reference S. Mallick, K. Banerjee, S. Ghosh, J.B. Rodriguez, S. Krishna, Mid-wavelength infrared avalanche photodiode using InAs–GaSb strain layer superlattice. IEEE Photonics Technology Letters 19(22), 1843–1845 (2007)CrossRefADS S. Mallick, K. Banerjee, S. Ghosh, J.B. Rodriguez, S. Krishna, Mid-wavelength infrared avalanche photodiode using InAs–GaSb strain layer superlattice. IEEE Photonics Technology Letters 19(22), 1843–1845 (2007)CrossRefADS
63.
go back to reference E. Plis, P. Rotella, S. Raghavan, L. R. Dawson, S. Krishna, D. Le and C.P. Morath, Growth of room-temperature “arsenic free” infrared photovoltaic detectors on GaSb substrate using metamorphic InAlSb digital alloy buffer layers, Appl. Phys. Lett. 82, 1658–1660 (2003) E. Plis, P. Rotella, S. Raghavan, L. R. Dawson, S. Krishna, D. Le and C.P. Morath, Growth of room-temperature “arsenic free” infrared photovoltaic detectors on GaSb substrate using metamorphic InAlSb digital alloy buffer layers, Appl. Phys. Lett. 82, 1658–1660 (2003)
64.
go back to reference T.F. Refaat, M.N. Abedin, V. Bhagwat, I.B. Bhat, P.S. Dutta, U.N. Singh, Appl. Phys. Lett. 85, 1874 (2004)CrossRefADS T.F. Refaat, M.N. Abedin, V. Bhagwat, I.B. Bhat, P.S. Dutta, U.N. Singh, Appl. Phys. Lett. 85, 1874 (2004)CrossRefADS
65.
go back to reference H.H. Gao, A. Krier and V.V. Sherstnev, Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 mm, Appl. Phys. Lett. 77, 872 (2000) H.H. Gao, A. Krier and V.V. Sherstnev, Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 mm, Appl. Phys. Lett. 77, 872 (2000)
66.
go back to reference A. Rakovska, V. Berger, X. Marcadet, B. Vinter, G. Glastre, T. Oksenhendler and D. Kaplan, Room temperature InAsSb photovoltaic midinfrared detector, Appl. Phys. Lett. 77, 397 (2000) A. Rakovska, V. Berger, X. Marcadet, B. Vinter, G. Glastre, T. Oksenhendler and D. Kaplan, Room temperature InAsSb photovoltaic midinfrared detector, Appl. Phys. Lett. 77, 397 (2000)
67.
go back to reference S. Maimon and G.W. Wicks, nBn detector, an infrared detector with reduced dark current and higher operating temperature, Appl. Phys. Lett. 89, 151109 (2006) S. Maimon and G.W. Wicks, nBn detector, an infrared detector with reduced dark current and higher operating temperature, Appl. Phys. Lett. 89, 151109 (2006)
68.
go back to reference A. Khoshakhlagh, J.B. Rodriguez, E. Plis, G.D. Bishop, Y.D. Sharma, H.S. Kim, L.. Dawson and S. Krishna, Bias dependent dual band response from InAs/GaInSb type II strain layer superlattice detectors, Appl. Phys. Lett. 91, 263504 (2007) A. Khoshakhlagh, J.B. Rodriguez, E. Plis, G.D. Bishop, Y.D. Sharma, H.S. Kim, L.. Dawson and S. Krishna, Bias dependent dual band response from InAs/GaInSb type II strain layer superlattice detectors, Appl. Phys. Lett. 91, 263504 (2007)
69.
go back to reference H.S. Kim, E. Plis, J.B. Rodriguez, G.D. Bishop, Y.D. Sharma, L.R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger and M. Sundaram, Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design, Appl. Phys. Lett. 92, 183502 (2008) H.S. Kim, E. Plis, J.B. Rodriguez, G.D. Bishop, Y.D. Sharma, L.R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger and M. Sundaram, Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design, Appl. Phys. Lett. 92, 183502 (2008)
70.
go back to reference J.R. Meyer, J.I. Malin, I. Vurgaftman, C.A. Hoffman, L.R. Ram-Mohan, Antimonide-based quantum heterostructure devices, in Antimonide-Related Strained- Layer Heterostructures, ed. by M.O. Manasreh (Gordon and Breach Science Publishers, Amsterdam, 1997), p. 235 J.R. Meyer, J.I. Malin, I. Vurgaftman, C.A. Hoffman, L.R. Ram-Mohan, Antimonide-based quantum heterostructure devices, in Antimonide-Related Strained- Layer Heterostructures, ed. by M.O. Manasreh (Gordon and Breach Science Publishers, Amsterdam, 1997), p. 235
Metadata
Title
Growth and fabrication issues of GaSb-based detectors
Authors
Farseem M. Mohammedy
M. Jamal Deen
Publication date
01-11-2009
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2009
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-009-9927-y

Other articles of this Issue 11/2009

Journal of Materials Science: Materials in Electronics 11/2009 Go to the issue