Skip to main content
Top
Published in: Intelligent Service Robotics 1/2021

18-11-2020 | Original Research Paper

Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation

Author: Xiaolei Hou

Published in: Intelligent Service Robotics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Classical haptic teleoperation systems heavily rely on operators’ intelligence and efforts in aerial robot navigation tasks, thereby posing significantly users’ workloads. In this paper, a novel shared control scheme is presented facilitating a multirotor aerial robot haptic teleoperation system that exhibits autonomous navigation capability. A hidden Markov model filter is proposed to identify the intention state of operator based on human inputs from haptic master device, which is subsequently adopted to derive goal position for a heuristic sampling based local path planner. The human inputs are considered as commanded velocity for a trajectory servo controller to drive the robot along the planned path. In addition, vehicle velocity is perceived by the user via haptic feedback on master device to enhance situation awareness and navigation safety of the user. An experimental study was conducted in a simulated and a physical environment, and the results verify the effectiveness of the novel scheme in safe navigation of aerial robots. A user study was carried out between a classical haptic teleoperation system and the proposed approach in the identical simulated complex environment. The flight data and task load index (TLX) are acquired and analyzed. Compared with the conventional haptic teleoperation scheme, the proposed scheme exhibits superior performance in safe and fast navigation of the multirotor vehicle, and is also of low task and cognitive loads.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goertz RC (1954) Mechanical master-slave manipulator. Nucleonics(US) Ceased publication 12(11):45–46 Goertz RC (1954) Mechanical master-slave manipulator. Nucleonics(US) Ceased publication 12(11):45–46
2.
go back to reference Clement G, Fournier R, Gravez P, Morillon J (1988) Computer aided teleoperation: from arm to vehicle control. In: 1988 IEEE International Conference on Robotics and Automation(ICRA), IEEE, pp 590–592 Clement G, Fournier R, Gravez P, Morillon J (1988) Computer aided teleoperation: from arm to vehicle control. In: 1988 IEEE International Conference on Robotics and Automation(ICRA), IEEE, pp 590–592
3.
go back to reference Hong SG, Lee JJ, Kim S (1999) Generating artificial force for feedback control of teleoperated mobile robots. In: 1999 IEEE/RSJ international conference intelligent robots and systems, IEEE, pp 1721–1726 Hong SG, Lee JJ, Kim S (1999) Generating artificial force for feedback control of teleoperated mobile robots. In: 1999 IEEE/RSJ international conference intelligent robots and systems, IEEE, pp 1721–1726
4.
go back to reference Li X, Song A, Li H, Lu W, Mao C (2012) Real-time obstacle avoidance for telerobotic systems based on equipotential surface. Int. J. Adv. Robot. Syst. 9(3):71–79CrossRef Li X, Song A, Li H, Lu W, Mao C (2012) Real-time obstacle avoidance for telerobotic systems based on equipotential surface. Int. J. Adv. Robot. Syst. 9(3):71–79CrossRef
5.
go back to reference Luo J, Lin Z, Li Y, Yang C (2020) A teleoperation framework for mobile robots based on shared control. IEEE Robot Autom Lett 5(2):377–384CrossRef Luo J, Lin Z, Li Y, Yang C (2020) A teleoperation framework for mobile robots based on shared control. IEEE Robot Autom Lett 5(2):377–384CrossRef
6.
go back to reference Hong SG, Kim BS, Kim S, Lee JJ (1998) Artificial force reflection control for teleoperated mobile robots. Mechatronics 8(6):707–717CrossRef Hong SG, Kim BS, Kim S, Lee JJ (1998) Artificial force reflection control for teleoperated mobile robots. Mechatronics 8(6):707–717CrossRef
7.
go back to reference Elhajj I, Xi N, Fung WK, Liu YH, Li WJ, Kaga T, Fukuda T (2001) Haptic information in internet-based teleoperation. IEEE Trans Mechatron 6(3):295–304CrossRef Elhajj I, Xi N, Fung WK, Liu YH, Li WJ, Kaga T, Fukuda T (2001) Haptic information in internet-based teleoperation. IEEE Trans Mechatron 6(3):295–304CrossRef
8.
go back to reference Lee S, Sukhatme GS, Kim GJ, Park CM (2002) Haptic control of a mobile robot: a user study. In: 2002 IEEE/RSJ international conference intelligent robots and systems, IEEE, vol 3, pp 2867–2874 Lee S, Sukhatme GS, Kim GJ, Park CM (2002) Haptic control of a mobile robot: a user study. In: 2002 IEEE/RSJ international conference intelligent robots and systems, IEEE, vol 3, pp 2867–2874
9.
go back to reference Diolaiti N, Melchiorri C (2002) Teleoperation of a mobile robot through haptic feedback. In: 2002 IEEE international workshop haptic virtual environments and their applications, IEEE, pp 67–72 Diolaiti N, Melchiorri C (2002) Teleoperation of a mobile robot through haptic feedback. In: 2002 IEEE international workshop haptic virtual environments and their applications, IEEE, pp 67–72
10.
go back to reference Lam TM, Boschloo HW, Mulder M, van Paassen MM (2009) Artificial force field for haptic feedback in uav teleoperation. IEEE Trans Syst Man Cybern Part A Syst Hum 39(6):1316–1330CrossRef Lam TM, Boschloo HW, Mulder M, van Paassen MM (2009) Artificial force field for haptic feedback in uav teleoperation. IEEE Trans Syst Man Cybern Part A Syst Hum 39(6):1316–1330CrossRef
11.
go back to reference Franchi A, Secchi C, Son HI, Bulthoff HH, Giordano PR (2012) Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Trans Robot Autom 28(5):1019–1033CrossRef Franchi A, Secchi C, Son HI, Bulthoff HH, Giordano PR (2012) Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Trans Robot Autom 28(5):1019–1033CrossRef
12.
go back to reference Lee D, Franchi A, Son HI, Ha C, Bulthoff HH, Giordano PR (2013) Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE Trans Mechatron 18(4):1334–1345CrossRef Lee D, Franchi A, Son HI, Ha C, Bulthoff HH, Giordano PR (2013) Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE Trans Mechatron 18(4):1334–1345CrossRef
13.
go back to reference Mersha AY, Stramigioli S, Carloni R (2014) On bilateral teleoperation of aerial robots. IEEE Trans Robot 30(1):258–274CrossRef Mersha AY, Stramigioli S, Carloni R (2014) On bilateral teleoperation of aerial robots. IEEE Trans Robot 30(1):258–274CrossRef
14.
go back to reference Hou X, Mahony R (2016) Comparative study of haptic interfaces for bilateral teleoperation of vtol aerial robots. IEEE Trans Syst Man Cybern Syst 46(10):1352–1363CrossRef Hou X, Mahony R (2016) Comparative study of haptic interfaces for bilateral teleoperation of vtol aerial robots. IEEE Trans Syst Man Cybern Syst 46(10):1352–1363CrossRef
15.
go back to reference Li W, Ding L, Gao H, Tavakoli M (2020) Haptic tele-driving of wheeled mobile robots under nonideal wheel rolling, kinematic control and communication time delay. IEEE Trans Syst Man Cybern Syst 50(1):336–347CrossRef Li W, Ding L, Gao H, Tavakoli M (2020) Haptic tele-driving of wheeled mobile robots under nonideal wheel rolling, kinematic control and communication time delay. IEEE Trans Syst Man Cybern Syst 50(1):336–347CrossRef
16.
go back to reference Mahony R, Schill F, Corke P, Oh YS (2019) A new framework for force feedback teleoperation of robotic vehicles based on optical flow. In: 2009 IEEE international conference on robotics and automation(ICRA), IEEE, pp 1079–1085 Mahony R, Schill F, Corke P, Oh YS (2019) A new framework for force feedback teleoperation of robotic vehicles based on optical flow. In: 2009 IEEE international conference on robotics and automation(ICRA), IEEE, pp 1079–1085
17.
go back to reference Omari S, Hua MD, Ducard G, Hamel T (2013) Bilateral haptic teleoperation of vtol uavs. In: 2013 IEEE international conference on robotics and automation(ICRA), IEEE, pp 2385–2391 Omari S, Hua MD, Ducard G, Hamel T (2013) Bilateral haptic teleoperation of vtol uavs. In: 2013 IEEE international conference on robotics and automation(ICRA), IEEE, pp 2385–2391
18.
go back to reference Hou X, Mahony R (2016) Dynamic kinesthetic boundary for haptic teleoperation of vtol aerial robots in complex environments. IEEE Trans Syst Man Cybern Syst 46(5):694–705CrossRef Hou X, Mahony R (2016) Dynamic kinesthetic boundary for haptic teleoperation of vtol aerial robots in complex environments. IEEE Trans Syst Man Cybern Syst 46(5):694–705CrossRef
19.
go back to reference Luo J, Yang CG, Wang N, Wang M (2019) Enhanced teleoperation performance using hybrid control and virtual fixture. Int J Syst Sci 50(3):451–462MathSciNetCrossRef Luo J, Yang CG, Wang N, Wang M (2019) Enhanced teleoperation performance using hybrid control and virtual fixture. Int J Syst Sci 50(3):451–462MathSciNetCrossRef
20.
go back to reference Jiang S, Lin C, Huang K, Song K (2017) Shared control design of a walking-assistant robot. IEEE Trans Control Syst Technol 25(6):2143–2150CrossRef Jiang S, Lin C, Huang K, Song K (2017) Shared control design of a walking-assistant robot. IEEE Trans Control Syst Technol 25(6):2143–2150CrossRef
21.
go back to reference Kong H, Yang C, Li G, Dai S (2020) A semg-based shared control system with no-target obstacle avoidance for omnidirectional mobile robots. IEEE Access 8:26030–26040CrossRef Kong H, Yang C, Li G, Dai S (2020) A semg-based shared control system with no-target obstacle avoidance for omnidirectional mobile robots. IEEE Access 8:26030–26040CrossRef
22.
go back to reference Nieto J, Slawinski E, Mut V, Wagner B (2010) Mobile robot teleoperation augmented with prediction and path-planning. Anal Design Eval Hum Mach Syst 11:53–58 Nieto J, Slawinski E, Mut V, Wagner B (2010) Mobile robot teleoperation augmented with prediction and path-planning. Anal Design Eval Hum Mach Syst 11:53–58
23.
go back to reference Nieto J, Slawinski E, Mut V, Wagner B (2012) Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning. Robotica 30(3):351–361 CrossRef Nieto J, Slawinski E, Mut V, Wagner B (2012) Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning. Robotica 30(3):351–361 CrossRef
25.
go back to reference Petkovic T, Puljiz D, Markovic I, Hein B (2019) Human intention estimation based on hidden markov model motion validation for safe flexible robotized warehouses. Robot Comput Integr Manuf 57:182–196CrossRef Petkovic T, Puljiz D, Markovic I, Hein B (2019) Human intention estimation based on hidden markov model motion validation for safe flexible robotized warehouses. Robot Comput Integr Manuf 57:182–196CrossRef
26.
go back to reference Khokar KH, Alqasemi R, Sarkar S, Dubey RV (2013) Human motion intention based scaled teleoperation for orientation assistance in preshaping for grasping. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), IEEE, pp 1–6 Khokar KH, Alqasemi R, Sarkar S, Dubey RV (2013) Human motion intention based scaled teleoperation for orientation assistance in preshaping for grasping. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), IEEE, pp 1–6
27.
go back to reference Li Y, Ge SS (2014) Human-robot collaboration based on motion intention estimation. IEEE Trans Mechatron 19(3):1007–1014CrossRef Li Y, Ge SS (2014) Human-robot collaboration based on motion intention estimation. IEEE Trans Mechatron 19(3):1007–1014CrossRef
28.
go back to reference Yu X, He W, Li Y, Xue C, Li J, Zou J, Yang C (2019) Bayesian estimation of human impedance and motion intention for human-robot collaboration. IEEE Transactions on Cybernetics, pp 1–13 Yu X, He W, Li Y, Xue C, Li J, Zou J, Yang C (2019) Bayesian estimation of human impedance and motion intention for human-robot collaboration. IEEE Transactions on Cybernetics, pp 1–13
29.
go back to reference Neville H (1985) Impedance control: An approach to manipulation: Part I–Theory. J Dyn Syst Meas Control, 107:1–24. Parts I, II, III Neville H (1985) Impedance control: An approach to manipulation: Part I–Theory. J Dyn Syst Meas Control, 107:1–24. Parts I, II, III
30.
go back to reference Mut V, Postigo J, Slawinski E, Kuchen B (2002) Bilateral teleoperation of mobile robots. Robotica 20(02):213–221CrossRef Mut V, Postigo J, Slawinski E, Kuchen B (2002) Bilateral teleoperation of mobile robots. Robotica 20(02):213–221CrossRef
31.
go back to reference Alaimo S, Pollini L, Buelthoff HH (2011) Admittance-based bilateral teleoperation with time delay for an unmanned aerial vehicle involved in an obstacle avoidance task. In: AIAA modeling and simulation technologies conference Alaimo S, Pollini L, Buelthoff HH (2011) Admittance-based bilateral teleoperation with time delay for an unmanned aerial vehicle involved in an obstacle avoidance task. In: AIAA modeling and simulation technologies conference
32.
go back to reference Schill F, Hou X, Mahony R (2010) Admittance mode framework for haptic teleoperation of hovering vehicles with unlimited workspace. In: 2010 Australian conference on robotics and automation(ACRA) Schill F, Hou X, Mahony R (2010) Admittance mode framework for haptic teleoperation of hovering vehicles with unlimited workspace. In: 2010 Australian conference on robotics and automation(ACRA)
33.
go back to reference Hou X, Mahony R, Schill F (2010) Representation of vehicle dynamics in haptic teleoperation of aerial robots. In: 2013 IEEE international conference on robotics and automation(ICRA), IEEE, pp 1447–1483 Hou X, Mahony R, Schill F (2010) Representation of vehicle dynamics in haptic teleoperation of aerial robots. In: 2013 IEEE international conference on robotics and automation(ICRA), IEEE, pp 1447–1483
34.
go back to reference Cappe O, Moulines E, Ryden T (2006) Inference in hidden Markov models. Springer Science & Business Media, BerlinMATH Cappe O, Moulines E, Ryden T (2006) Inference in hidden Markov models. Springer Science & Business Media, BerlinMATH
35.
go back to reference Elliott RJ, Aggoun L, Moore JB (2008) Hidden Markov models: estimation and control, vol 29. Springer Science & Business Media, BerlinMATH Elliott RJ, Aggoun L, Moore JB (2008) Hidden Markov models: estimation and control, vol 29. Springer Science & Business Media, BerlinMATH
36.
go back to reference Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269CrossRef Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269CrossRef
37.
go back to reference Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRef Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRef
38.
go back to reference LaValle SM, Kuffner JJ (1999) Randomized kinodynamic planning. In: 1999 IEEE international conference on robotics and automation (ICRA), IEEE, vol 1, pp 473–479 LaValle SM, Kuffner JJ (1999) Randomized kinodynamic planning. In: 1999 IEEE international conference on robotics and automation (ICRA), IEEE, vol 1, pp 473–479
39.
go back to reference Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRef Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894CrossRef
40.
go back to reference Mahony R, Hamel T, Pflimlin JM (2008) Nonlinear complementary filters on the special orthogonal group. IEEE Trans Autom Control 53(5):1203–1218MathSciNetCrossRef Mahony R, Hamel T, Pflimlin JM (2008) Nonlinear complementary filters on the special orthogonal group. IEEE Trans Autom Control 53(5):1203–1218MathSciNetCrossRef
41.
go back to reference Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag 19(3):20–32CrossRef Mahony R, Kumar V, Corke P (2012) Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot Autom Mag 19(3):20–32CrossRef
42.
go back to reference Hamel T, Mahony R, Lozano R, Ostrowski J (2002) Dynamic modelling and configuration stabilization for an x4-flyer. IFAC World Congress 15(1):217–222 Hamel T, Mahony R, Lozano R, Ostrowski J (2002) Dynamic modelling and configuration stabilization for an x4-flyer. IFAC World Congress 15(1):217–222
43.
go back to reference Pounds P, Mahony R, Corke P (2010) Modelling and control of a large quadrotor robot. Control Eng Pract 18(7):691–699CrossRef Pounds P, Mahony R, Corke P (2010) Modelling and control of a large quadrotor robot. Control Eng Pract 18(7):691–699CrossRef
Metadata
Title
Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation
Author
Xiaolei Hou
Publication date
18-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Intelligent Service Robotics / Issue 1/2021
Print ISSN: 1861-2776
Electronic ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-020-00339-2

Other articles of this Issue 1/2021

Intelligent Service Robotics 1/2021 Go to the issue

Editorial

Editorial