Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2015

01-02-2015

High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties

Authors: Kumaresh Halder, Biplab Kumar Paul, Debasis Roy, Alakananda Bhattacharya, Sukhen Das

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Highly crystallized mullite synthesis with different concentration of tungsten ions has been achieved by sol–gel technique and the effect of tungsten ion doping on mullite was examined at 1,100 and 1,400 °C. Characterizations were done by DTA/TGA, XRD, FTIR, LCR and FESEM instruments at the room temperature. Mullite formation was found to depend on the concentration of the doping ion up to a certain extent. With the addition of tungsten ion, the mullite formation temperature was decreased. The result showed a decrease in mullite phase at higher concentrations of doping ion with respect to undoped mullite. Oxide phases continued to increase with increasing doping concentration, which is mainly responsible for the increment in dielectric value. Dielectric value of the doped mullite was found to decrease with the increase in frequency for all the samples and saturates at higher frequency, which is normal behavior for dielectric ceramics. A.C. conductivity increased with frequency by following Jonscher’s power law. The composite showed maximum dielectric constant of 124.02 sintered at 1,400 °C for 0.05 M at 20 Hz frequency. Highly crystalline mullite whiskers of average dimension 3 μm were obtained at 0.02 tungsten concentration sintered at 1,400 °C. Due to the good dielectric response, comparatively low loss and appropriate nature of the doped mullite it can be used as ceramic capacitors, packaging material for integrated high speed devices. Also, it’s electrical and thermal suitability may prove to be significant as the insulator material of the spark plug.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.S. Mazdiyasni, L.M. Brown, Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J. Am. Ceram. Soc. 55, 548–552 (1972)CrossRef K.S. Mazdiyasni, L.M. Brown, Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J. Am. Ceram. Soc. 55, 548–552 (1972)CrossRef
2.
go back to reference B.L. Metcalfe, J.H. Sant, Synthesis, microstructure, and physical properties of high purity mullite. Trans. J. Br. Ceram. Soc. 74, 193–201 (1975) B.L. Metcalfe, J.H. Sant, Synthesis, microstructure, and physical properties of high purity mullite. Trans. J. Br. Ceram. Soc. 74, 193–201 (1975)
3.
go back to reference S. Kanzaki, H. Tabata, T. Kumazawa, S. Ohta, Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C6–C7 (1985)CrossRef S. Kanzaki, H. Tabata, T. Kumazawa, S. Ohta, Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C6–C7 (1985)CrossRef
4.
go back to reference V.V. Vol’khin, I.L. Kazakova, P. Pongratz, E. Halwax, Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg. Mater. 36(4), 375–379 (2000)CrossRef V.V. Vol’khin, I.L. Kazakova, P. Pongratz, E. Halwax, Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg. Mater. 36(4), 375–379 (2000)CrossRef
5.
go back to reference H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite: a review. J. Eur. Ceram. Soc. 28(4), 329–344 (2008)CrossRef H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite: a review. J. Eur. Ceram. Soc. 28(4), 329–344 (2008)CrossRef
6.
go back to reference S. Rahman, S. Freimann, The Real Structure of Mullite, in Mullite, ed. by H. Schneider, S. Komarneni (Wiley-VCH, Weinheim, 2005), pp. 46–70 S. Rahman, S. Freimann, The Real Structure of Mullite, in Mullite, ed. by H. Schneider, S. Komarneni (Wiley-VCH, Weinheim, 2005), pp. 46–70
7.
go back to reference H. Schneider, S. Komarneni, Mullite, 2nd edn. (Wiley-VCH, Weinheim, 2006) H. Schneider, S. Komarneni, Mullite, 2nd edn. (Wiley-VCH, Weinheim, 2006)
8.
go back to reference R.J. Angel, C.T. Prewitt, Crystal-structure of mullite: a re-examination of the average structure. Am. Mineral. 71, 1476–1482 (1986) R.J. Angel, C.T. Prewitt, Crystal-structure of mullite: a re-examination of the average structure. Am. Mineral. 71, 1476–1482 (1986)
9.
go back to reference S. Durovic, P. Fejdi, Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 2, 97–112 (1976) S. Durovic, P. Fejdi, Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 2, 97–112 (1976)
10.
go back to reference H. Saalfeld, V. Guse, Structure refinement of 3-2-mullite (3Al2O3·2SiO2). Neues Jahrbuch Fur Mineralogie-Monatshefte 4, 145–152 (1981) H. Saalfeld, V. Guse, Structure refinement of 3-2-mullite (3Al2O3·2SiO2). Neues Jahrbuch Fur Mineralogie-Monatshefte 4, 145–152 (1981)
11.
go back to reference F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Algeria kaolinite used for mullite formation. Appl. Clay Sci. 38, 304–310 (2008)CrossRef F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Algeria kaolinite used for mullite formation. Appl. Clay Sci. 38, 304–310 (2008)CrossRef
12.
go back to reference H.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)CrossRef H.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)CrossRef
13.
go back to reference V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)CrossRef V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)CrossRef
14.
go back to reference V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullitisation behavior of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRef V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullitisation behavior of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRef
15.
go back to reference D.J. Cassidy, J.L. Woolfrey, B.R. Bartlett, B. Ben-Nissan, The effect of precursor chemistry on the crystallization and densification of sol–gel derived mullite gels and powders. J. Solgel Sci. Technol. 10, 19–30 (1997)CrossRef D.J. Cassidy, J.L. Woolfrey, B.R. Bartlett, B. Ben-Nissan, The effect of precursor chemistry on the crystallization and densification of sol–gel derived mullite gels and powders. J. Solgel Sci. Technol. 10, 19–30 (1997)CrossRef
16.
go back to reference A.M.L. Marques Fonseca, J.M.E. Ferreira, I.M. Miranda Salvado, J.L. Baptista, Mullite based compositions prepared by sol–gel techniques. J. Solgel Sci. Technol. 8, 403–407 (1997)CrossRef A.M.L. Marques Fonseca, J.M.E. Ferreira, I.M. Miranda Salvado, J.L. Baptista, Mullite based compositions prepared by sol–gel techniques. J. Solgel Sci. Technol. 8, 403–407 (1997)CrossRef
17.
go back to reference Y.X. Huang, A.M.R. Senos, J. Rocha, J.L. Baptista, Gel formation in mullite precursors obtained via tetra ethyl orthosilicate (TEOS) pre-hydrolysis. J. Mater. Sci. 32, 105–110 (1997)CrossRef Y.X. Huang, A.M.R. Senos, J. Rocha, J.L. Baptista, Gel formation in mullite precursors obtained via tetra ethyl orthosilicate (TEOS) pre-hydrolysis. J. Mater. Sci. 32, 105–110 (1997)CrossRef
18.
go back to reference F. Mizukami, K. Maeda, M. Toba, T. Sano, S.I. Niwa, Effect of organic ligand used in sol–gel process on the formation of mullite. J. Solgel Sci. Technol. 8, 101–106 (1997) F. Mizukami, K. Maeda, M. Toba, T. Sano, S.I. Niwa, Effect of organic ligand used in sol–gel process on the formation of mullite. J. Solgel Sci. Technol. 8, 101–106 (1997)
19.
go back to reference H. Schneider, Transition metal distribution, in Mullite and Mullite Matrix Composites, ed. by S. Somiya, R.F. Davis, J.A. Pask (The American Ceramic Society, Westerville, 1990), p. 135 H. Schneider, Transition metal distribution, in Mullite and Mullite Matrix Composites, ed. by S. Somiya, R.F. Davis, J.A. Pask (The American Ceramic Society, Westerville, 1990), p. 135
20.
go back to reference P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite: an in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 28, 353–365 (2008)CrossRef P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite: an in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 28, 353–365 (2008)CrossRef
21.
go back to reference E.E. Kiss, P.S. Putanov, Influence of transition metal ions on the textural properties of alumina and aluminosilicate. React. Kinet. Catal. Lett. 75(1), 39–45 (2002)CrossRef E.E. Kiss, P.S. Putanov, Influence of transition metal ions on the textural properties of alumina and aluminosilicate. React. Kinet. Catal. Lett. 75(1), 39–45 (2002)CrossRef
22.
go back to reference D. Roy, B. Bagchi, S. Das, P. Nandy, Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 138(1), 375–383 (2013)CrossRef D. Roy, B. Bagchi, S. Das, P. Nandy, Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 138(1), 375–383 (2013)CrossRef
23.
go back to reference A. Beran, D. Voll, H. Schneider, Dehydration and structural development mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21(14), 2479–2485 (2001)CrossRef A. Beran, D. Voll, H. Schneider, Dehydration and structural development mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21(14), 2479–2485 (2001)CrossRef
24.
go back to reference S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, G. Panczer, Micro-raman and FT-IR spectroscopy study of thermal transformation of St. Claire dickite. Opt. Mater. 16, 319–327 (2001)CrossRef S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, G. Panczer, Micro-raman and FT-IR spectroscopy study of thermal transformation of St. Claire dickite. Opt. Mater. 16, 319–327 (2001)CrossRef
25.
go back to reference S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999)CrossRef S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999)CrossRef
26.
go back to reference W.J. Walker, M.E. Saccoccia, Alumina ceramic for spark plug insulator, U.S. Patent No. 20110077141 A1 (2011) W.J. Walker, M.E. Saccoccia, Alumina ceramic for spark plug insulator, U.S. Patent No. 20110077141 A1 (2011)
27.
go back to reference Ph. Colomban, Structure of oxide gels and glasses by infrared and Raman scattering: I. aluminus. J. Mater. Sci. 24, 3002–3010 (1989)CrossRef Ph. Colomban, Structure of oxide gels and glasses by infrared and Raman scattering: I. aluminus. J. Mater. Sci. 24, 3002–3010 (1989)CrossRef
28.
go back to reference M. Daniele, V. Mario, B. Guido, Mullite type structures in the system Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J. Am. Ceram. Soc. 75, 1929–1934 (1992)CrossRef M. Daniele, V. Mario, B. Guido, Mullite type structures in the system Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J. Am. Ceram. Soc. 75, 1929–1934 (1992)CrossRef
29.
go back to reference P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel by Fourier transform infrared spectroscopy. Int. J. Inorg. Mat. 3, 693–698 (2001)CrossRef P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel by Fourier transform infrared spectroscopy. Int. J. Inorg. Mat. 3, 693–698 (2001)CrossRef
30.
go back to reference D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007)CrossRef D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007)CrossRef
31.
go back to reference R.A. Abbas, Studing some dielectric properties and effective parameters of composite materials containing of novolak resin. J. Eng. Technol. 8(25), 277–288 (2007) R.A. Abbas, Studing some dielectric properties and effective parameters of composite materials containing of novolak resin. J. Eng. Technol. 8(25), 277–288 (2007)
32.
go back to reference A. See, J. Hassan, M. Hashim, W.M.D.W. Yusoff, Dielectric variations of barium titanate additions on mullite–kaolinite sample. Solid State Sci. Technol. 16, 197–204 (2008) A. See, J. Hassan, M. Hashim, W.M.D.W. Yusoff, Dielectric variations of barium titanate additions on mullite–kaolinite sample. Solid State Sci. Technol. 16, 197–204 (2008)
33.
go back to reference G.M. Tsangargi, G.C. Psarras, A.J. Kontopoulos, Dielectric permittivity and loss of an aluminum-filled epoxy resin. J. Compos. Mat. 41, 403–417 (2007) G.M. Tsangargi, G.C. Psarras, A.J. Kontopoulos, Dielectric permittivity and loss of an aluminum-filled epoxy resin. J. Compos. Mat. 41, 403–417 (2007)
34.
go back to reference G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—iron particles loaded—polymer composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1187–1198 (2003)CrossRef G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—iron particles loaded—polymer composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1187–1198 (2003)CrossRef
35.
go back to reference M. Al-Haj Abdallah, Y. Alramadin, M. Ahmad, A. Zihlif, S. Jawad, A. Alnajjar, Electrical characterization of metal fiber-polyester composite. Int. J. Polym. Mat. 37, 33–42 (1997)CrossRef M. Al-Haj Abdallah, Y. Alramadin, M. Ahmad, A. Zihlif, S. Jawad, A. Alnajjar, Electrical characterization of metal fiber-polyester composite. Int. J. Polym. Mat. 37, 33–42 (1997)CrossRef
36.
go back to reference S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull. Mater. Sci. 25(7), 599–607 (2002)CrossRef S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull. Mater. Sci. 25(7), 599–607 (2002)CrossRef
37.
go back to reference L.H. VanVlack, Elements of Material Science and Engineering, 6th edn. (Addison-Wesley Co, New York, 1989), p. 399 L.H. VanVlack, Elements of Material Science and Engineering, 6th edn. (Addison-Wesley Co, New York, 1989), p. 399
38.
go back to reference G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxyresin and metal particles. Compos. Part A Appl. Sci. Manuf. 33, 375–384 (2002)CrossRef G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxyresin and metal particles. Compos. Part A Appl. Sci. Manuf. 33, 375–384 (2002)CrossRef
39.
go back to reference Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html. Accessed 28 Sept 2014 Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html. Accessed 28 Sept 2014
40.
go back to reference F.H. Riddle, Ceramic spark-plug insulator. J. Am. Ceram. Soc. 32(11), 333–346 (1949)CrossRef F.H. Riddle, Ceramic spark-plug insulator. J. Am. Ceram. Soc. 32(11), 333–346 (1949)CrossRef
Metadata
Title
High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties
Authors
Kumaresh Halder
Biplab Kumar Paul
Debasis Roy
Alakananda Bhattacharya
Sukhen Das
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2521-y

Other articles of this Issue 2/2015

Journal of Materials Science: Materials in Electronics 2/2015 Go to the issue