Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2015

01.02.2015

High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties

verfasst von: Kumaresh Halder, Biplab Kumar Paul, Debasis Roy, Alakananda Bhattacharya, Sukhen Das

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly crystallized mullite synthesis with different concentration of tungsten ions has been achieved by sol–gel technique and the effect of tungsten ion doping on mullite was examined at 1,100 and 1,400 °C. Characterizations were done by DTA/TGA, XRD, FTIR, LCR and FESEM instruments at the room temperature. Mullite formation was found to depend on the concentration of the doping ion up to a certain extent. With the addition of tungsten ion, the mullite formation temperature was decreased. The result showed a decrease in mullite phase at higher concentrations of doping ion with respect to undoped mullite. Oxide phases continued to increase with increasing doping concentration, which is mainly responsible for the increment in dielectric value. Dielectric value of the doped mullite was found to decrease with the increase in frequency for all the samples and saturates at higher frequency, which is normal behavior for dielectric ceramics. A.C. conductivity increased with frequency by following Jonscher’s power law. The composite showed maximum dielectric constant of 124.02 sintered at 1,400 °C for 0.05 M at 20 Hz frequency. Highly crystalline mullite whiskers of average dimension 3 μm were obtained at 0.02 tungsten concentration sintered at 1,400 °C. Due to the good dielectric response, comparatively low loss and appropriate nature of the doped mullite it can be used as ceramic capacitors, packaging material for integrated high speed devices. Also, it’s electrical and thermal suitability may prove to be significant as the insulator material of the spark plug.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.S. Mazdiyasni, L.M. Brown, Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J. Am. Ceram. Soc. 55, 548–552 (1972)CrossRef K.S. Mazdiyasni, L.M. Brown, Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J. Am. Ceram. Soc. 55, 548–552 (1972)CrossRef
2.
Zurück zum Zitat B.L. Metcalfe, J.H. Sant, Synthesis, microstructure, and physical properties of high purity mullite. Trans. J. Br. Ceram. Soc. 74, 193–201 (1975) B.L. Metcalfe, J.H. Sant, Synthesis, microstructure, and physical properties of high purity mullite. Trans. J. Br. Ceram. Soc. 74, 193–201 (1975)
3.
Zurück zum Zitat S. Kanzaki, H. Tabata, T. Kumazawa, S. Ohta, Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C6–C7 (1985)CrossRef S. Kanzaki, H. Tabata, T. Kumazawa, S. Ohta, Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C6–C7 (1985)CrossRef
4.
Zurück zum Zitat V.V. Vol’khin, I.L. Kazakova, P. Pongratz, E. Halwax, Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg. Mater. 36(4), 375–379 (2000)CrossRef V.V. Vol’khin, I.L. Kazakova, P. Pongratz, E. Halwax, Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg. Mater. 36(4), 375–379 (2000)CrossRef
5.
Zurück zum Zitat H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite: a review. J. Eur. Ceram. Soc. 28(4), 329–344 (2008)CrossRef H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite: a review. J. Eur. Ceram. Soc. 28(4), 329–344 (2008)CrossRef
6.
Zurück zum Zitat S. Rahman, S. Freimann, The Real Structure of Mullite, in Mullite, ed. by H. Schneider, S. Komarneni (Wiley-VCH, Weinheim, 2005), pp. 46–70 S. Rahman, S. Freimann, The Real Structure of Mullite, in Mullite, ed. by H. Schneider, S. Komarneni (Wiley-VCH, Weinheim, 2005), pp. 46–70
7.
Zurück zum Zitat H. Schneider, S. Komarneni, Mullite, 2nd edn. (Wiley-VCH, Weinheim, 2006) H. Schneider, S. Komarneni, Mullite, 2nd edn. (Wiley-VCH, Weinheim, 2006)
8.
Zurück zum Zitat R.J. Angel, C.T. Prewitt, Crystal-structure of mullite: a re-examination of the average structure. Am. Mineral. 71, 1476–1482 (1986) R.J. Angel, C.T. Prewitt, Crystal-structure of mullite: a re-examination of the average structure. Am. Mineral. 71, 1476–1482 (1986)
9.
Zurück zum Zitat S. Durovic, P. Fejdi, Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 2, 97–112 (1976) S. Durovic, P. Fejdi, Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 2, 97–112 (1976)
10.
Zurück zum Zitat H. Saalfeld, V. Guse, Structure refinement of 3-2-mullite (3Al2O3·2SiO2). Neues Jahrbuch Fur Mineralogie-Monatshefte 4, 145–152 (1981) H. Saalfeld, V. Guse, Structure refinement of 3-2-mullite (3Al2O3·2SiO2). Neues Jahrbuch Fur Mineralogie-Monatshefte 4, 145–152 (1981)
11.
Zurück zum Zitat F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Algeria kaolinite used for mullite formation. Appl. Clay Sci. 38, 304–310 (2008)CrossRef F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot, F. Valdivieso, Algeria kaolinite used for mullite formation. Appl. Clay Sci. 38, 304–310 (2008)CrossRef
12.
Zurück zum Zitat H.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)CrossRef H.F. Chen, M.C. Wang, M.H. Hon, Phase transformation and growth of mullite in kaolin ceramics. J. Eur. Ceram. Soc. 24, 2389–2397 (2004)CrossRef
13.
Zurück zum Zitat V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)CrossRef V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullite from clay-reactive alumina for insulating substrate application. Appl. Clay Sci. 25, 29–35 (2004)CrossRef
14.
Zurück zum Zitat V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullitisation behavior of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRef V. Viswabaskarana, F.D. Gnanama, M. Balasubramanian, Mullitisation behavior of calcined clay–alumina mixtures. Ceram. Int. 29(5), 561–571 (2003)CrossRef
15.
Zurück zum Zitat D.J. Cassidy, J.L. Woolfrey, B.R. Bartlett, B. Ben-Nissan, The effect of precursor chemistry on the crystallization and densification of sol–gel derived mullite gels and powders. J. Solgel Sci. Technol. 10, 19–30 (1997)CrossRef D.J. Cassidy, J.L. Woolfrey, B.R. Bartlett, B. Ben-Nissan, The effect of precursor chemistry on the crystallization and densification of sol–gel derived mullite gels and powders. J. Solgel Sci. Technol. 10, 19–30 (1997)CrossRef
16.
Zurück zum Zitat A.M.L. Marques Fonseca, J.M.E. Ferreira, I.M. Miranda Salvado, J.L. Baptista, Mullite based compositions prepared by sol–gel techniques. J. Solgel Sci. Technol. 8, 403–407 (1997)CrossRef A.M.L. Marques Fonseca, J.M.E. Ferreira, I.M. Miranda Salvado, J.L. Baptista, Mullite based compositions prepared by sol–gel techniques. J. Solgel Sci. Technol. 8, 403–407 (1997)CrossRef
17.
Zurück zum Zitat Y.X. Huang, A.M.R. Senos, J. Rocha, J.L. Baptista, Gel formation in mullite precursors obtained via tetra ethyl orthosilicate (TEOS) pre-hydrolysis. J. Mater. Sci. 32, 105–110 (1997)CrossRef Y.X. Huang, A.M.R. Senos, J. Rocha, J.L. Baptista, Gel formation in mullite precursors obtained via tetra ethyl orthosilicate (TEOS) pre-hydrolysis. J. Mater. Sci. 32, 105–110 (1997)CrossRef
18.
Zurück zum Zitat F. Mizukami, K. Maeda, M. Toba, T. Sano, S.I. Niwa, Effect of organic ligand used in sol–gel process on the formation of mullite. J. Solgel Sci. Technol. 8, 101–106 (1997) F. Mizukami, K. Maeda, M. Toba, T. Sano, S.I. Niwa, Effect of organic ligand used in sol–gel process on the formation of mullite. J. Solgel Sci. Technol. 8, 101–106 (1997)
19.
Zurück zum Zitat H. Schneider, Transition metal distribution, in Mullite and Mullite Matrix Composites, ed. by S. Somiya, R.F. Davis, J.A. Pask (The American Ceramic Society, Westerville, 1990), p. 135 H. Schneider, Transition metal distribution, in Mullite and Mullite Matrix Composites, ed. by S. Somiya, R.F. Davis, J.A. Pask (The American Ceramic Society, Westerville, 1990), p. 135
20.
Zurück zum Zitat P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite: an in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 28, 353–365 (2008)CrossRef P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven, Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite: an in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 28, 353–365 (2008)CrossRef
21.
Zurück zum Zitat E.E. Kiss, P.S. Putanov, Influence of transition metal ions on the textural properties of alumina and aluminosilicate. React. Kinet. Catal. Lett. 75(1), 39–45 (2002)CrossRef E.E. Kiss, P.S. Putanov, Influence of transition metal ions on the textural properties of alumina and aluminosilicate. React. Kinet. Catal. Lett. 75(1), 39–45 (2002)CrossRef
22.
Zurück zum Zitat D. Roy, B. Bagchi, S. Das, P. Nandy, Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 138(1), 375–383 (2013)CrossRef D. Roy, B. Bagchi, S. Das, P. Nandy, Electrical and dielectric properties of sol–gel derived mullite doped with transition metals. Mater. Chem. Phys. 138(1), 375–383 (2013)CrossRef
23.
Zurück zum Zitat A. Beran, D. Voll, H. Schneider, Dehydration and structural development mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21(14), 2479–2485 (2001)CrossRef A. Beran, D. Voll, H. Schneider, Dehydration and structural development mullite precursors: an FTIR spectroscopic study. J. Eur. Ceram. Soc. 21(14), 2479–2485 (2001)CrossRef
24.
Zurück zum Zitat S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, G. Panczer, Micro-raman and FT-IR spectroscopy study of thermal transformation of St. Claire dickite. Opt. Mater. 16, 319–327 (2001)CrossRef S. Shoval, M. Boudeulle, S. Yariv, I. Lapides, G. Panczer, Micro-raman and FT-IR spectroscopy study of thermal transformation of St. Claire dickite. Opt. Mater. 16, 319–327 (2001)CrossRef
25.
Zurück zum Zitat S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999)CrossRef S.P. Chaudhuri, S.K. Patra, A.K. Chakraborty, Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941–2950 (1999)CrossRef
26.
Zurück zum Zitat W.J. Walker, M.E. Saccoccia, Alumina ceramic for spark plug insulator, U.S. Patent No. 20110077141 A1 (2011) W.J. Walker, M.E. Saccoccia, Alumina ceramic for spark plug insulator, U.S. Patent No. 20110077141 A1 (2011)
27.
Zurück zum Zitat Ph. Colomban, Structure of oxide gels and glasses by infrared and Raman scattering: I. aluminus. J. Mater. Sci. 24, 3002–3010 (1989)CrossRef Ph. Colomban, Structure of oxide gels and glasses by infrared and Raman scattering: I. aluminus. J. Mater. Sci. 24, 3002–3010 (1989)CrossRef
28.
Zurück zum Zitat M. Daniele, V. Mario, B. Guido, Mullite type structures in the system Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J. Am. Ceram. Soc. 75, 1929–1934 (1992)CrossRef M. Daniele, V. Mario, B. Guido, Mullite type structures in the system Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J. Am. Ceram. Soc. 75, 1929–1934 (1992)CrossRef
29.
Zurück zum Zitat P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel by Fourier transform infrared spectroscopy. Int. J. Inorg. Mat. 3, 693–698 (2001)CrossRef P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel by Fourier transform infrared spectroscopy. Int. J. Inorg. Mat. 3, 693–698 (2001)CrossRef
30.
Zurück zum Zitat D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007)CrossRef D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007)CrossRef
31.
Zurück zum Zitat R.A. Abbas, Studing some dielectric properties and effective parameters of composite materials containing of novolak resin. J. Eng. Technol. 8(25), 277–288 (2007) R.A. Abbas, Studing some dielectric properties and effective parameters of composite materials containing of novolak resin. J. Eng. Technol. 8(25), 277–288 (2007)
32.
Zurück zum Zitat A. See, J. Hassan, M. Hashim, W.M.D.W. Yusoff, Dielectric variations of barium titanate additions on mullite–kaolinite sample. Solid State Sci. Technol. 16, 197–204 (2008) A. See, J. Hassan, M. Hashim, W.M.D.W. Yusoff, Dielectric variations of barium titanate additions on mullite–kaolinite sample. Solid State Sci. Technol. 16, 197–204 (2008)
33.
Zurück zum Zitat G.M. Tsangargi, G.C. Psarras, A.J. Kontopoulos, Dielectric permittivity and loss of an aluminum-filled epoxy resin. J. Compos. Mat. 41, 403–417 (2007) G.M. Tsangargi, G.C. Psarras, A.J. Kontopoulos, Dielectric permittivity and loss of an aluminum-filled epoxy resin. J. Compos. Mat. 41, 403–417 (2007)
34.
Zurück zum Zitat G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—iron particles loaded—polymer composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1187–1198 (2003)CrossRef G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—iron particles loaded—polymer composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1187–1198 (2003)CrossRef
35.
Zurück zum Zitat M. Al-Haj Abdallah, Y. Alramadin, M. Ahmad, A. Zihlif, S. Jawad, A. Alnajjar, Electrical characterization of metal fiber-polyester composite. Int. J. Polym. Mat. 37, 33–42 (1997)CrossRef M. Al-Haj Abdallah, Y. Alramadin, M. Ahmad, A. Zihlif, S. Jawad, A. Alnajjar, Electrical characterization of metal fiber-polyester composite. Int. J. Polym. Mat. 37, 33–42 (1997)CrossRef
36.
Zurück zum Zitat S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull. Mater. Sci. 25(7), 599–607 (2002)CrossRef S. Sindhu, M.R. Anantharaman, B.P. Thampi, K.A. Malini, P. Kurian, Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull. Mater. Sci. 25(7), 599–607 (2002)CrossRef
37.
Zurück zum Zitat L.H. VanVlack, Elements of Material Science and Engineering, 6th edn. (Addison-Wesley Co, New York, 1989), p. 399 L.H. VanVlack, Elements of Material Science and Engineering, 6th edn. (Addison-Wesley Co, New York, 1989), p. 399
38.
Zurück zum Zitat G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxyresin and metal particles. Compos. Part A Appl. Sci. Manuf. 33, 375–384 (2002)CrossRef G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Electrical relaxations in polymeric particulate composites of epoxyresin and metal particles. Compos. Part A Appl. Sci. Manuf. 33, 375–384 (2002)CrossRef
39.
Zurück zum Zitat Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html. Accessed 28 Sept 2014 Thermal Conductivity, hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html. Accessed 28 Sept 2014
40.
Zurück zum Zitat F.H. Riddle, Ceramic spark-plug insulator. J. Am. Ceram. Soc. 32(11), 333–346 (1949)CrossRef F.H. Riddle, Ceramic spark-plug insulator. J. Am. Ceram. Soc. 32(11), 333–346 (1949)CrossRef
Metadaten
Titel
High-K tungsten-mullite composite for electronic industrial application: synthesis and study of its microstructure, phase behavior and electrical properties
verfasst von
Kumaresh Halder
Biplab Kumar Paul
Debasis Roy
Alakananda Bhattacharya
Sukhen Das
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2521-y

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Science: Materials in Electronics 2/2015 Zur Ausgabe

Neuer Inhalt