Skip to main content
Top
Published in: Cellulose 9/2018

29-06-2018 | Original Paper

Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties

Authors: Chuchu Chen, Shuwen Deng, Yini Yang, Dan Yang, Ting Ye, Dagang Li

Published in: Cellulose | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chitin and gelatin are biodegradable and biocompatible polymers which have gained much attention applied as bio-based materials. In this study, Chitin nanofiber (ChNF)/gelatin nanocomposite was synthesized by immersion method followed with drying at room temperature. The ChNF content in the ChNF/gelatin was controlled in a broad range by changing the concentration of gelatin solutions from 2, 5 to 10% during the immersion processes. The prepared ChNF/gelatin showed uniformly nanofiber network structures which embedded inside the gelatin matrix. The UV measurement indicated that the transmittance of ChNF was increased to as high as 88.7% from 65% at 600 nm, regardless of nanofiber content. Young’s modulus of the 50.2%-ChNF/gelatin (with the ChNF content of 50.2%) was around 5192 MPa, which was almost two times higher than that of the pure gelatin. This mechanical improvement was attributed to the reinforcing effect from ChNF nano-networks as well as the formation of hydrogen bondings between gelatin and chitin moleculars. Therefore, with the highly transparent and improved mechanical properties, the prepared ChNF/gelatin nanocomposite films may offer promising and broad prospects in the field of food packaging and bio-medical industrials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef
go back to reference Abe K, Ifuku S, Kawata M, Yano H (2013) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef Abe K, Ifuku S, Kawata M, Yano H (2013) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef
go back to reference Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef
go back to reference Ansari F, Skrifvars M, Berglund L (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos Sci Technol 117:298–306CrossRef Ansari F, Skrifvars M, Berglund L (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos Sci Technol 117:298–306CrossRef
go back to reference Chen C, Li D, Yano H, Abe K (2014a) Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose 21:3339–3346CrossRef Chen C, Li D, Yano H, Abe K (2014a) Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose 21:3339–3346CrossRef
go back to reference Chen Y, Jiang D, Zhou X, Lin Q (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef Chen Y, Jiang D, Zhou X, Lin Q (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef
go back to reference Chen C, Yang C, Li S, Li D (2015a) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313CrossRefPubMed Chen C, Yang C, Li S, Li D (2015a) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313CrossRefPubMed
go back to reference Chen C, Yano H, Li D, Abe K (2015b) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22:2543–2550CrossRef Chen C, Yano H, Li D, Abe K (2015b) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22:2543–2550CrossRef
go back to reference Dai H, Ou S, Huang Y, Liu Z, Huang H (2018) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25:593–606CrossRef Dai H, Ou S, Huang Y, Liu Z, Huang H (2018) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25:593–606CrossRef
go back to reference Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198CrossRef Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198CrossRef
go back to reference Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L (2018) Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll 75:1–12CrossRef Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L (2018) Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll 75:1–12CrossRef
go back to reference Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185CrossRefPubMed Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185CrossRefPubMed
go back to reference Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226CrossRef Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226CrossRef
go back to reference Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, Zhang X, Khademhosseini A, Annabi N, Rolandi M (2016) Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem B 4:2539–2543CrossRefPubMedPubMedCentral Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, Zhang X, Khademhosseini A, Annabi N, Rolandi M (2016) Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem B 4:2539–2543CrossRefPubMedPubMedCentral
go back to reference Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9 Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9
go back to reference Ifuku S, Nogi M (2009) Preparation of chitin nanofibrs with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588CrossRefPubMed Ifuku S, Nogi M (2009) Preparation of chitin nanofibrs with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588CrossRefPubMed
go back to reference Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefPubMed Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefPubMed
go back to reference Ifuku S, Morooka S, Norio Nakagaito A, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708CrossRef Ifuku S, Morooka S, Norio Nakagaito A, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708CrossRef
go back to reference Jiang X, Zhang Y, Wang J, Wu G (2018) Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE. J For Eng 3(01):89–96 Jiang X, Zhang Y, Wang J, Wu G (2018) Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE. J For Eng 3(01):89–96
go back to reference Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos A Appl Sci Manuf 58:30–35CrossRef Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos A Appl Sci Manuf 58:30–35CrossRef
go back to reference Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 45:343–347CrossRefPubMed Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 45:343–347CrossRefPubMed
go back to reference Kim U-J, Kim HJK, Choi JW, Satoshi K, Wada M (2017) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef Kim U-J, Kim HJK, Choi JW, Satoshi K, Wada M (2017) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef
go back to reference Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef
go back to reference Le Thi P, Lee Y, Nguyen DH, Park KD (2017) In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 5:757–764CrossRef Le Thi P, Lee Y, Nguyen DH, Park KD (2017) In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 5:757–764CrossRef
go back to reference Marangon CA, Martins VCA, Leite PMF, Santos DA, Nitschke M, Plepis AMG (2017) Chitosan/gelatin/copaiba oil emulsion formulation and its potential on controlling the growth of pathogenic bacteria. Ind Crops Prod 99:163–171CrossRef Marangon CA, Martins VCA, Leite PMF, Santos DA, Nitschke M, Plepis AMG (2017) Chitosan/gelatin/copaiba oil emulsion formulation and its potential on controlling the growth of pathogenic bacteria. Ind Crops Prod 99:163–171CrossRef
go back to reference Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T, Tamura H (2008) Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr Polym 73:456–463CrossRef Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T, Tamura H (2008) Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr Polym 73:456–463CrossRef
go back to reference Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009a) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009a) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef
go back to reference Nagahama H, Rani VV, Shalumon KT, Jayakumar R, Nair SV, Koiwa S, Furuike T, Tamura H (2009b) Preparation, characterization, bioactive and cell attachment studies of alpha-chitin/gelatin composite membranes. Int J Biol Macromol 44:333–337CrossRefPubMed Nagahama H, Rani VV, Shalumon KT, Jayakumar R, Nair SV, Koiwa S, Furuike T, Tamura H (2009b) Preparation, characterization, bioactive and cell attachment studies of alpha-chitin/gelatin composite membranes. Int J Biol Macromol 44:333–337CrossRefPubMed
go back to reference Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef
go back to reference Nieto-Suarez M, Lopez-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183CrossRefPubMed Nieto-Suarez M, Lopez-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183CrossRefPubMed
go back to reference Nissilä T, Karhula SS, Saarakkala S, Oksman K (2018) Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: structure, orientation and mechanical properties. Compos Sci Technol 155:64–71CrossRef Nissilä T, Karhula SS, Saarakkala S, Oksman K (2018) Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: structure, orientation and mechanical properties. Compos Sci Technol 155:64–71CrossRef
go back to reference Ogawa Y, Azuma K, Izawa H, Morimoto M, Ochi K, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S (2017) Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 104:1882–1889CrossRefPubMed Ogawa Y, Azuma K, Izawa H, Morimoto M, Ochi K, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S (2017) Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 104:1882–1889CrossRefPubMed
go back to reference Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef
go back to reference Rubentheren V, Ward TAW, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef Rubentheren V, Ward TAW, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef
go back to reference Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381CrossRefPubMed Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381CrossRefPubMed
go back to reference Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50:7475–7483CrossRef Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50:7475–7483CrossRef
go back to reference Wang R, Liu LL, Yu JY, Wang Z, Liu LH, Fan Y (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 24:5443–5454CrossRef Wang R, Liu LL, Yu JY, Wang Z, Liu LH, Fan Y (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 24:5443–5454CrossRef
go back to reference Yang Q, Shi Z, Qi Z, Yang J, Lao J, Saito T, Xiong C, Isogai A (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:e115–e116CrossRef Yang Q, Shi Z, Qi Z, Yang J, Lao J, Saito T, Xiong C, Isogai A (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:e115–e116CrossRef
Metadata
Title
Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties
Authors
Chuchu Chen
Shuwen Deng
Yini Yang
Dan Yang
Ting Ye
Dagang Li
Publication date
29-06-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 9/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1915-z

Other articles of this Issue 9/2018

Cellulose 9/2018 Go to the issue