Skip to main content
Erschienen in: Cellulose 9/2018

29.06.2018 | Original Paper

Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties

verfasst von: Chuchu Chen, Shuwen Deng, Yini Yang, Dan Yang, Ting Ye, Dagang Li

Erschienen in: Cellulose | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chitin and gelatin are biodegradable and biocompatible polymers which have gained much attention applied as bio-based materials. In this study, Chitin nanofiber (ChNF)/gelatin nanocomposite was synthesized by immersion method followed with drying at room temperature. The ChNF content in the ChNF/gelatin was controlled in a broad range by changing the concentration of gelatin solutions from 2, 5 to 10% during the immersion processes. The prepared ChNF/gelatin showed uniformly nanofiber network structures which embedded inside the gelatin matrix. The UV measurement indicated that the transmittance of ChNF was increased to as high as 88.7% from 65% at 600 nm, regardless of nanofiber content. Young’s modulus of the 50.2%-ChNF/gelatin (with the ChNF content of 50.2%) was around 5192 MPa, which was almost two times higher than that of the pure gelatin. This mechanical improvement was attributed to the reinforcing effect from ChNF nano-networks as well as the formation of hydrogen bondings between gelatin and chitin moleculars. Therefore, with the highly transparent and improved mechanical properties, the prepared ChNF/gelatin nanocomposite films may offer promising and broad prospects in the field of food packaging and bio-medical industrials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRef
Zurück zum Zitat Abe K, Ifuku S, Kawata M, Yano H (2013) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef Abe K, Ifuku S, Kawata M, Yano H (2013) Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment. Cellulose 21:535–540CrossRef
Zurück zum Zitat Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A Appl Sci Manuf 63:35–44CrossRef
Zurück zum Zitat Ansari F, Skrifvars M, Berglund L (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos Sci Technol 117:298–306CrossRef Ansari F, Skrifvars M, Berglund L (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos Sci Technol 117:298–306CrossRef
Zurück zum Zitat Chen C, Li D, Yano H, Abe K (2014a) Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose 21:3339–3346CrossRef Chen C, Li D, Yano H, Abe K (2014a) Dissolution and gelation of α-chitin nanofibers using a simple NaOH treatment at low temperatures. Cellulose 21:3339–3346CrossRef
Zurück zum Zitat Chen Y, Jiang D, Zhou X, Lin Q (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef Chen Y, Jiang D, Zhou X, Lin Q (2014b) Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment. Cellulose 21:2679–2693CrossRef
Zurück zum Zitat Chen C, Yang C, Li S, Li D (2015a) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313CrossRefPubMed Chen C, Yang C, Li S, Li D (2015a) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313CrossRefPubMed
Zurück zum Zitat Chen C, Yano H, Li D, Abe K (2015b) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22:2543–2550CrossRef Chen C, Yano H, Li D, Abe K (2015b) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22:2543–2550CrossRef
Zurück zum Zitat Dai H, Ou S, Huang Y, Liu Z, Huang H (2018) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25:593–606CrossRef Dai H, Ou S, Huang Y, Liu Z, Huang H (2018) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25:593–606CrossRef
Zurück zum Zitat Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198CrossRef Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198CrossRef
Zurück zum Zitat Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L (2018) Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll 75:1–12CrossRef Ge S, Liu Q, Li M, Liu J, Lu H, Li F, Zhang S, Sun Q, Xiong L (2018) Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll 75:1–12CrossRef
Zurück zum Zitat Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185CrossRefPubMed Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185CrossRefPubMed
Zurück zum Zitat Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226CrossRef Hassan EA, Hassan ML, Abou-zeid RE, El-Wakil NA (2016) Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod 93:219–226CrossRef
Zurück zum Zitat Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, Zhang X, Khademhosseini A, Annabi N, Rolandi M (2016) Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem B 4:2539–2543CrossRefPubMedPubMedCentral Hassanzadeh P, Kazemzadeh-Narbat M, Rosenzweig R, Zhang X, Khademhosseini A, Annabi N, Rolandi M (2016) Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem B 4:2539–2543CrossRefPubMedPubMedCentral
Zurück zum Zitat Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9 Huang B, Lu Q, Tang L (2016) Research progress of nanocellulose manufacture and application. J For Eng 1:1–9
Zurück zum Zitat Ifuku S, Nogi M (2009) Preparation of chitin nanofibrs with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588CrossRefPubMed Ifuku S, Nogi M (2009) Preparation of chitin nanofibrs with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588CrossRefPubMed
Zurück zum Zitat Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefPubMed Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefPubMed
Zurück zum Zitat Ifuku S, Morooka S, Norio Nakagaito A, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708CrossRef Ifuku S, Morooka S, Norio Nakagaito A, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708CrossRef
Zurück zum Zitat Jiang X, Zhang Y, Wang J, Wu G (2018) Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE. J For Eng 3(01):89–96 Jiang X, Zhang Y, Wang J, Wu G (2018) Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE. J For Eng 3(01):89–96
Zurück zum Zitat Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos A Appl Sci Manuf 58:30–35CrossRef Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos A Appl Sci Manuf 58:30–35CrossRef
Zurück zum Zitat Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 45:343–347CrossRefPubMed Kakkar P, Verma S, Manjubala I, Madhan B (2014) Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C Mater Biol Appl 45:343–347CrossRefPubMed
Zurück zum Zitat Kim U-J, Kim HJK, Choi JW, Satoshi K, Wada M (2017) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef Kim U-J, Kim HJK, Choi JW, Satoshi K, Wada M (2017) Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24:5517–5528CrossRef
Zurück zum Zitat Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772CrossRef
Zurück zum Zitat Le Thi P, Lee Y, Nguyen DH, Park KD (2017) In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 5:757–764CrossRef Le Thi P, Lee Y, Nguyen DH, Park KD (2017) In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 5:757–764CrossRef
Zurück zum Zitat Marangon CA, Martins VCA, Leite PMF, Santos DA, Nitschke M, Plepis AMG (2017) Chitosan/gelatin/copaiba oil emulsion formulation and its potential on controlling the growth of pathogenic bacteria. Ind Crops Prod 99:163–171CrossRef Marangon CA, Martins VCA, Leite PMF, Santos DA, Nitschke M, Plepis AMG (2017) Chitosan/gelatin/copaiba oil emulsion formulation and its potential on controlling the growth of pathogenic bacteria. Ind Crops Prod 99:163–171CrossRef
Zurück zum Zitat Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T, Tamura H (2008) Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr Polym 73:456–463CrossRef Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T, Tamura H (2008) Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr Polym 73:456–463CrossRef
Zurück zum Zitat Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009a) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009a) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef
Zurück zum Zitat Nagahama H, Rani VV, Shalumon KT, Jayakumar R, Nair SV, Koiwa S, Furuike T, Tamura H (2009b) Preparation, characterization, bioactive and cell attachment studies of alpha-chitin/gelatin composite membranes. Int J Biol Macromol 44:333–337CrossRefPubMed Nagahama H, Rani VV, Shalumon KT, Jayakumar R, Nair SV, Koiwa S, Furuike T, Tamura H (2009b) Preparation, characterization, bioactive and cell attachment studies of alpha-chitin/gelatin composite membranes. Int J Biol Macromol 44:333–337CrossRefPubMed
Zurück zum Zitat Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559CrossRef
Zurück zum Zitat Nieto-Suarez M, Lopez-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183CrossRefPubMed Nieto-Suarez M, Lopez-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183CrossRefPubMed
Zurück zum Zitat Nissilä T, Karhula SS, Saarakkala S, Oksman K (2018) Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: structure, orientation and mechanical properties. Compos Sci Technol 155:64–71CrossRef Nissilä T, Karhula SS, Saarakkala S, Oksman K (2018) Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: structure, orientation and mechanical properties. Compos Sci Technol 155:64–71CrossRef
Zurück zum Zitat Ogawa Y, Azuma K, Izawa H, Morimoto M, Ochi K, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S (2017) Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 104:1882–1889CrossRefPubMed Ogawa Y, Azuma K, Izawa H, Morimoto M, Ochi K, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S (2017) Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. Int J Biol Macromol 104:1882–1889CrossRefPubMed
Zurück zum Zitat Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef
Zurück zum Zitat Rubentheren V, Ward TAW, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef Rubentheren V, Ward TAW, Chee CY, Nair P (2015) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541CrossRef
Zurück zum Zitat Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381CrossRefPubMed Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381CrossRefPubMed
Zurück zum Zitat Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50:7475–7483CrossRef Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50:7475–7483CrossRef
Zurück zum Zitat Wang R, Liu LL, Yu JY, Wang Z, Liu LH, Fan Y (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 24:5443–5454CrossRef Wang R, Liu LL, Yu JY, Wang Z, Liu LH, Fan Y (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 24:5443–5454CrossRef
Zurück zum Zitat Yang Q, Shi Z, Qi Z, Yang J, Lao J, Saito T, Xiong C, Isogai A (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:e115–e116CrossRef Yang Q, Shi Z, Qi Z, Yang J, Lao J, Saito T, Xiong C, Isogai A (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:e115–e116CrossRef
Metadaten
Titel
Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties
verfasst von
Chuchu Chen
Shuwen Deng
Yini Yang
Dan Yang
Ting Ye
Dagang Li
Publikationsdatum
29.06.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1915-z

Weitere Artikel der Ausgabe 9/2018

Cellulose 9/2018 Zur Ausgabe