Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

13-11-2019

Hyperthermia properties of NixFe3−xO4 nanoparticles: a first-order reversal curve investigation

Authors: Ahmad Reza Yasemian, Mohammad Almasi Kashi, Abdolali Ramazani

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic nanoparticles (NPs) studied in hyperthermia investigations have shown promising results in combating tumors and slowing cancerous growth. However, no attention has been paid to hyperthermia properties of nickel ferrite NPs with different compositions. Herein, we synthesize NixFe3−xO4 (0 ≤ x ≤ 1) NPs using a co-precipitation method, followed by the investigation of their structural, magnetic, and hyperthermia properties. According to room-temperature hysteresis loop results, the complete replacement of Fe cations by Ni2+ ions leads to a reduction in the saturation magnetization (Ms) from 55.40 to 19.30 emu/g, and an increase in the coercive field (Hc) from 7.33 to 71.40 Oe. Moreover, first-order reversal curve analysis reveals a reduction in the respective superparamagnetic fraction from 77 to 29% when increasing the Ni concentration (x) from 0 to 1. The results on magnetic hyperthermia properties show that Ni0.6Fe2.4O4 and Ni0.8Fe2.2O4 NPs have highest heating efficiency, giving rise to specific loss power values of 170.5 and 169 W/g in a water medium with a concentration of 3 mg/ml, and 200.5 and 198.4 W/g for a concentration of 1.5 mg/ml, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596 (1957) R. Gilchrist, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrott, C.B. Taylor, Selective inductive heating of lymph nodes. Ann. Surg. 146(4), 596 (1957)
2.
go back to reference U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia-and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31(6), 1444–1451 (2004) U. Gneveckow, A. Jordan, R. Scholz, V. Brüß, N. Waldöfner, J. Ricke, A. Feussner, B. Hildebrandt, B. Rau, P. Wust, Description and characterization of the novel hyperthermia-and thermoablation-system for clinical magnetic fluid hyperthermia. Med. Phys. 31(6), 1444–1451 (2004)
3.
go back to reference A. Tomitaka, J-i Jo, I. Aoki, Y. Tabata, Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflamm. Regen. 34(1), 045–055 (2014) A. Tomitaka, J-i Jo, I. Aoki, Y. Tabata, Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflamm. Regen. 34(1), 045–055 (2014)
4.
go back to reference A. Tomitaka, Y. Takemura, Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J. Pers. Nanomed. 1(1), 33–37 (2015) A. Tomitaka, Y. Takemura, Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J. Pers. Nanomed. 1(1), 33–37 (2015)
5.
go back to reference M.A. Abakumov, N.V. Nukolova, M. Sokolsky-Papkov, S.A. Shein, T.O. Sandalova, H.M. Vishwasrao, N.F. Grinenko, I.L. Gubsky, A.M. Abakumov, A.V. Kabanov, VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11(4), 825–833 (2015) M.A. Abakumov, N.V. Nukolova, M. Sokolsky-Papkov, S.A. Shein, T.O. Sandalova, H.M. Vishwasrao, N.F. Grinenko, I.L. Gubsky, A.M. Abakumov, A.V. Kabanov, VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11(4), 825–833 (2015)
6.
go back to reference S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004) S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)
7.
go back to reference J.-P.A.A. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37(2), 223–228 (2008) J.-P.A.A. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37(2), 223–228 (2008)
8.
go back to reference H.M. Joshi, Y.P. Lin, M. Aslam, P. Prasad, E.A. Schultz-Sikma, R. Edelman, T. Meade, V.P. Dravid, Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009) H.M. Joshi, Y.P. Lin, M. Aslam, P. Prasad, E.A. Schultz-Sikma, R. Edelman, T. Meade, V.P. Dravid, Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C 113(41), 17761–17767 (2009)
9.
go back to reference A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013) A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)
10.
go back to reference A.B. Salunkhe, V.M. Khot, S. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr. Top. Med. Chem. 14(5), 572–594 (2014) A.B. Salunkhe, V.M. Khot, S. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr. Top. Med. Chem. 14(5), 572–594 (2014)
11.
go back to reference L. Delaunay, S. Neveu, G. Noyel, J. Monin, A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater. 149(3), L239–L245 (1995) L. Delaunay, S. Neveu, G. Noyel, J. Monin, A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater. 149(3), L239–L245 (1995)
12.
go back to reference R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002) R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)
13.
go back to reference I. Obaidat, B. Issa, Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1), 63–89 (2015) I. Obaidat, B. Issa, Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1), 63–89 (2015)
14.
go back to reference Z. Nemati, J. Alonso, L. Martinez, H. Khurshid, E. Garaio, J. Garcia, M. Phan, H. Srikanth, Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C 120(15), 8370–8379 (2016) Z. Nemati, J. Alonso, L. Martinez, H. Khurshid, E. Garaio, J. Garcia, M. Phan, H. Srikanth, Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J. Phys. Chem. C 120(15), 8370–8379 (2016)
15.
go back to reference L.-Y. Lu, L.-N. Yu, X.-G. Xu, Y. Jiang, Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 32(4), 323–331 (2013) L.-Y. Lu, L.-N. Yu, X.-G. Xu, Y. Jiang, Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 32(4), 323–331 (2013)
16.
go back to reference Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017) Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater. Des. 123, 174–196 (2017)
17.
go back to reference R. Betancourt-Galindo, O. Ayala-Valenzuela, L. Garcia-Cerda, O.R. Fernandez, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J. Magn. Magn. Mater. 294(2), e33–e36 (2005) R. Betancourt-Galindo, O. Ayala-Valenzuela, L. Garcia-Cerda, O.R. Fernandez, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J. Magn. Magn. Mater. 294(2), e33–e36 (2005)
18.
go back to reference G. Salazar-Alvarez, R.T. Olsson, J. Sort, W.A. Macedo, J.D. Ardisson, M.D. Baró, U.W. Gedde, J. Nogués, Enhanced coercivity in co-rich near-stoichiometric CoxFe3-xO4+ δ nanoparticles prepared in large batches. Chem. Mater. 19(20), 4957–4963 (2007) G. Salazar-Alvarez, R.T. Olsson, J. Sort, W.A. Macedo, J.D. Ardisson, M.D. Baró, U.W. Gedde, J. Nogués, Enhanced coercivity in co-rich near-stoichiometric CoxFe3-xO4+ δ nanoparticles prepared in large batches. Chem. Mater. 19(20), 4957–4963 (2007)
19.
go back to reference H. Le Trong, A. Barnabé, L. Presmanes, P. Tailhades, Phase decomposition study in CoxFe3−xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation. Solid State Sci. 10(5), 550–556 (2008) H. Le Trong, A. Barnabé, L. Presmanes, P. Tailhades, Phase decomposition study in CoxFe3−xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation. Solid State Sci. 10(5), 550–556 (2008)
20.
go back to reference L. Hu, C. De Montferrand, Y. Lalatonne, L. Motte, A. Brioude, Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3–xO4 nanoparticles within nonpolar and aqueous solvents. J. Phys. Chem. C 116(7), 4349–4355 (2012) L. Hu, C. De Montferrand, Y. Lalatonne, L. Motte, A. Brioude, Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3–xO4 nanoparticles within nonpolar and aqueous solvents. J. Phys. Chem. C 116(7), 4349–4355 (2012)
21.
go back to reference R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014) R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties. J. Mater. Chem. C 2(29), 5944–5953 (2014)
22.
go back to reference L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Monolayer assembly of ferrimagnetic CoxFe3–xO4 nanocubes for magnetic recording. Nano Lett. 14(6), 3395–3399 (2014) L. Wu, P.-O. Jubert, D. Berman, W. Imaino, A. Nelson, H. Zhu, S. Zhang, S. Sun, Monolayer assembly of ferrimagnetic CoxFe3–xO4 nanocubes for magnetic recording. Nano Lett. 14(6), 3395–3399 (2014)
23.
go back to reference A.M. Wahba, M.B. Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3−xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015) A.M. Wahba, M.B. Mohamed, Structural and magnetic characterization and cation distribution of nanocrystalline CoxFe3−xO4 ferrites. J. Magn. Magn. Mater. 378, 246–252 (2015)
24.
go back to reference E. Fantechi, C. Innocenti, M. Albino, E. Lottini, C. Sangregorio, Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 380, 365–371 (2015) E. Fantechi, C. Innocenti, M. Albino, E. Lottini, C. Sangregorio, Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles. J. Magn. Magn. Mater. 380, 365–371 (2015)
25.
go back to reference J. Mohapatra, M. Xing, J.P. Liu, Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Adv. 8(5), 056725 (2018) J. Mohapatra, M. Xing, J.P. Liu, Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange. AIP Adv. 8(5), 056725 (2018)
26.
go back to reference S. Bae, S.W. Lee, Y. Takemura, Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 89(25), 252503 (2006) S. Bae, S.W. Lee, Y. Takemura, Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine. Appl. Phys. Lett. 89(25), 252503 (2006)
27.
go back to reference S. Larumbe, C. Gomez-Polo, J. Pérez-Landazábal, A. García-Prieto, J. Alonso, M. Fdez-Gubieda, D. Cordero, J. Gómez, Ni doped Fe3O4 magnetic nanoparticles. J. Nanosci. Nanotechnol. 12(3), 2652–2660 (2012) S. Larumbe, C. Gomez-Polo, J. Pérez-Landazábal, A. García-Prieto, J. Alonso, M. Fdez-Gubieda, D. Cordero, J. Gómez, Ni doped Fe3O4 magnetic nanoparticles. J. Nanosci. Nanotechnol. 12(3), 2652–2660 (2012)
28.
go back to reference M.I. Nugraha, P. Noorlaily, M. Abdullah, F. Iskandar (eds.) Synthesis of NixFe3-xO4 nanoparticles by microwave-assisted coprecipitation and their application in viscosity reduction of heavy oil. Materials Science Forum, Trans Tech Publications (2013) M.I. Nugraha, P. Noorlaily, M. Abdullah, F. Iskandar (eds.) Synthesis of NixFe3-xO4 nanoparticles by microwave-assisted coprecipitation and their application in viscosity reduction of heavy oil. Materials Science Forum, Trans Tech Publications (2013)
29.
go back to reference Y. Xia, B. Wang, G. Wang, X. Liu, H. Wang, MOF-derived porous NixFe3-xO4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem. 3(2), 299–308 (2016) Y. Xia, B. Wang, G. Wang, X. Liu, H. Wang, MOF-derived porous NixFe3-xO4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem. 3(2), 299–308 (2016)
30.
go back to reference X. Sun, X. Zhang, P. Wang, M. Yang, J. Ma, Z. Ding, B. Geng, M. Wang, Y. Ma, Evolution of structure and magnetism from NixFe3−xO4 (x = 0, 0.5, 1 and 1.5) to Ni-Fe alloys and to Ni-Fe-N. Mater. Res. Bull. 95, 261–266 (2017) X. Sun, X. Zhang, P. Wang, M. Yang, J. Ma, Z. Ding, B. Geng, M. Wang, Y. Ma, Evolution of structure and magnetism from NixFe3−xO4 (x = 0, 0.5, 1 and 1.5) to Ni-Fe alloys and to Ni-Fe-N. Mater. Res. Bull. 95, 261–266 (2017)
31.
go back to reference K. Jiang, Y. Liu, Y. Pan, R. Wang, P. Hu, R. He, L. Zhang, G. Tong, Monodisperse NixFe3-xO4 nanospheres: metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci. 404, 40–48 (2017) K. Jiang, Y. Liu, Y. Pan, R. Wang, P. Hu, R. He, L. Zhang, G. Tong, Monodisperse NixFe3-xO4 nanospheres: metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci. 404, 40–48 (2017)
32.
go back to reference Y. Yunas, W.A. Adi, M. Mashadi, P.A. Rahmy, Magnetic and microwave absorption properties of nickel ferrite (NixFe3-xO4) by HEM technique. Malays. J. Fundam. Appl. Sci. 13(3), 203–206 (2017) Y. Yunas, W.A. Adi, M. Mashadi, P.A. Rahmy, Magnetic and microwave absorption properties of nickel ferrite (NixFe3-xO4) by HEM technique. Malays. J. Fundam. Appl. Sci. 13(3), 203–206 (2017)
33.
go back to reference M. Phadatare, J. Meshram, K. Gurav, J.H. Kim, S. Pawar, Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J. Phys. D 49(9), 0950040.0 (2016) M. Phadatare, J. Meshram, K. Gurav, J.H. Kim, S. Pawar, Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J. Phys. D 49(9), 0950040.0 (2016)
34.
go back to reference V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012) V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)
35.
go back to reference P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018) P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: the revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)
36.
go back to reference Y. Slimani, M. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(2), 2621–2628 (2019) Y. Slimani, M. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F.B. Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45(2), 2621–2628 (2019)
37.
go back to reference A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. Solid Earth 105(B12), 28461–28475 (2000) A.P. Roberts, C.R. Pike, K.L. Verosub, First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. Solid Earth 105(B12), 28461–28475 (2000)
38.
go back to reference M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves. J. Appl. Phys. 103(7), 07C518 (2008) M. Winklhofer, R.K. Dumas, K. Liu, Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves. J. Appl. Phys. 103(7), 07C518 (2008)
39.
go back to reference S. Samanifar, M. Alikhani, M.A. Kashi, A. Ramazani, A. Montazer, Magnetic alloy nanowire arrays with different lengths: insights into the crossover angle of magnetization reversal process. J. Magn. Magn. Mater. 430, 6–15 (2017) S. Samanifar, M. Alikhani, M.A. Kashi, A. Ramazani, A. Montazer, Magnetic alloy nanowire arrays with different lengths: insights into the crossover angle of magnetization reversal process. J. Magn. Magn. Mater. 430, 6–15 (2017)
40.
go back to reference M. Mouallem-Bahout, S. Bertrand, O. Pena, Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178(4), 1080–1086 (2005) M. Mouallem-Bahout, S. Bertrand, O. Pena, Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178(4), 1080–1086 (2005)
41.
go back to reference M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009) M. Salavati-Niasari, F. Davar, T. Mahmoudi, A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron 28(8), 1455–1458 (2009)
42.
go back to reference P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46(12), 2208–2211 (2011) P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46(12), 2208–2211 (2011)
43.
go back to reference G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18(38), S2935 (2006) G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18(38), S2935 (2006)
44.
go back to reference A. Goldman, Modern Ferrite Technology (Springer, Cham, 2006) A. Goldman, Modern Ferrite Technology (Springer, Cham, 2006)
45.
go back to reference G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighianet, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 6–9 (2010) G. Nabiyouni, M.J. Fesharaki, M. Mozafari, J. Amighianet, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 6–9 (2010)
46.
go back to reference R. Kambale, P. Shaikh, S. Kamble, Y. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1–2), 599–603 (2009) R. Kambale, P. Shaikh, S. Kamble, Y. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1–2), 599–603 (2009)
47.
go back to reference M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116(12), 124304 (2014) M. Kumari, M. Widdrat, É. Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116(12), 124304 (2014)
48.
go back to reference B. Mehdaoui, R. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys. Rev. B 87(17), 174419 (2013) B. Mehdaoui, R. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Phys. Rev. B 87(17), 174419 (2013)
Metadata
Title
Hyperthermia properties of NixFe3−xO4 nanoparticles: a first-order reversal curve investigation
Authors
Ahmad Reza Yasemian
Mohammad Almasi Kashi
Abdolali Ramazani
Publication date
13-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02501-8

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue