Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 1/2018

01-03-2017 | ORIGINAL ARTICLE

Identification of microbial populations contributing to nitrification-associated nitrous oxide emission during cattle manure composting process with forced aeration

Authors: Daisuke Inoue, Kazuko Sawada, Hirofumi Tsutsui, Taku Fujiwara

Published in: Journal of Material Cycles and Waste Management | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study was conducted to clarify the fates of whole nitrogen cycle-associated microorganisms during laboratory-scale composting of cattle manure with continuous forced aeration, with the primary goal of identifying microbial populations that contributed greatly to high nitrous oxide (N2O) emissions triggered by nitrification. DNA microarray analysis targeting functional genes associated with the entire microbial nitrogen cycle was applied for the first time to investigate the fates of entire nitrogen cycle-associated microbial community during composting, and revealed increased diversity of nitrogen cycle-associated microorganisms, including ammonia-oxidizing populations, during active nitrification and N2O emission periods. Further analyses of the compositions of ammonia-oxidizing populations by DNA microarray, PCR-denaturing gradient gel electrophoresis and clone library methods revealed that Nitrosomonas europaea, Nitrosomonas eutropha, and their relatives were the dominant ammonia-oxidizing populations. Overall, the analyses of entire nitrogen cycle-associated microbial community and specific functional groups by a combination of different molecular biological methods in this study could confirm that N. europaea/eutropha and their relatives contributed greatly to high N2O emissions via active nitrification during cattle manure composting with forced aeration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Fujiwara T (2012) Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas. Water Sci Technol 66:1171–1177CrossRef Fujiwara T (2012) Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas. Water Sci Technol 66:1171–1177CrossRef
3.
go back to reference Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100:5444–5453CrossRef Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100:5444–5453CrossRef
4.
go back to reference Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T (2011) Microbiology of nitrogen cycle in animal manure compost. Microb Biotechnol 4:700–709CrossRef Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T (2011) Microbiology of nitrogen cycle in animal manure compost. Microb Biotechnol 4:700–709CrossRef
6.
go back to reference Innerebner G, Knapp B, Vasara T, Romantschuk M, Inasam H (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38:1092–1100CrossRef Innerebner G, Knapp B, Vasara T, Romantschuk M, Inasam H (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils. Soil Biol Biochem 38:1092–1100CrossRef
7.
go back to reference Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Morioka R, Yoshida N (2010) Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 76:1555–1562CrossRef Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Morioka R, Yoshida N (2010) Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 76:1555–1562CrossRef
8.
go back to reference Shimaya C, Hashimoto T (2008) Improvement of media for thermophilic ammonia-oxidizing bacteria in compost. Soil Sci Plant Nutr 54:529–533CrossRef Shimaya C, Hashimoto T (2008) Improvement of media for thermophilic ammonia-oxidizing bacteria in compost. Soil Sci Plant Nutr 54:529–533CrossRef
9.
go back to reference Yamada T, Miyauchi K, Ueda H, Ueda Y, Sugawara H, Nakai Y, Endo G (2007) Composting cattle dung wastes by using a hyperthermophilic pre-treatment process: characterization by physicochemical and molecular biological analysis. J Biosci Bioeng 104:408–415CrossRef Yamada T, Miyauchi K, Ueda H, Ueda Y, Sugawara H, Nakai Y, Endo G (2007) Composting cattle dung wastes by using a hyperthermophilic pre-treatment process: characterization by physicochemical and molecular biological analysis. J Biosci Bioeng 104:408–415CrossRef
10.
go back to reference Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60:807–815CrossRef Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60:807–815CrossRef
11.
go back to reference Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y (2011) Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Appl Microbiol Biotechnol 90:1501–1510CrossRef Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y (2011) Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Appl Microbiol Biotechnol 90:1501–1510CrossRef
12.
go back to reference Tsutsui H, Fujiwara T, Inoue D, Ito R, Matsukawa K, Funamizu N (2015) Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process. Waste Manag 42:10–16CrossRef Tsutsui H, Fujiwara T, Inoue D, Ito R, Matsukawa K, Funamizu N (2015) Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process. Waste Manag 42:10–16CrossRef
13.
go back to reference Inoue D, Pang J, Matsuda M, Sei K, Nishida K, Ike M (2014) Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World J Microbiol Biotechnol 30:2907–2915CrossRef Inoue D, Pang J, Matsuda M, Sei K, Nishida K, Ike M (2014) Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World J Microbiol Biotechnol 30:2907–2915CrossRef
14.
go back to reference Tsutsui H, Fujiwara T, Matsukawa K, Funamizu N (2013) Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure. Bioresour Technol 141:205–211CrossRef Tsutsui H, Fujiwara T, Matsukawa K, Funamizu N (2013) Nitrous oxide emission mechanisms during intermittently aerated composting of cattle manure. Bioresour Technol 141:205–211CrossRef
15.
go back to reference Chowdhury MA, de Neergaard A, Jensen LS (2014) Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 97:16–25CrossRef Chowdhury MA, de Neergaard A, Jensen LS (2014) Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere 97:16–25CrossRef
16.
go back to reference Jarvis Å, Sundberg C, Milenkovski S, Pell M, Smårs S, Lindgren P-E, Hallin S (2009) Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. J Appl Microbiol 106:1502–1511CrossRef Jarvis Å, Sundberg C, Milenkovski S, Pell M, Smårs S, Lindgren P-E, Hallin S (2009) Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. J Appl Microbiol 106:1502–1511CrossRef
17.
go back to reference Fukumoto Y, Suzuki K, Osada T, Kuroda K, Hanajima D, Yasuda T, Haga K (2006) Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. Environ Sci Technol 40:6787–6791CrossRef Fukumoto Y, Suzuki K, Osada T, Kuroda K, Hanajima D, Yasuda T, Haga K (2006) Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. Environ Sci Technol 40:6787–6791CrossRef
18.
go back to reference Fukumoto Y, Suzuki K, Kuroda K, Waki M, Yasuda T (2011) Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting. Bioresour Technol 102:1468–1474CrossRef Fukumoto Y, Suzuki K, Kuroda K, Waki M, Yasuda T (2011) Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting. Bioresour Technol 102:1468–1474CrossRef
19.
go back to reference Wu L, Thompson DK, Li G, Hurt RA, Tiedje JM, Zhou J (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790CrossRef Wu L, Thompson DK, Li G, Hurt RA, Tiedje JM, Zhou J (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790CrossRef
20.
go back to reference Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712 Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712
21.
go back to reference Eddy SR (1995) Multiple alignment using hidden Markov models. In: Rawlings C, Clark D, Altman R, Hunter L, Lengauer T, Wodak S (eds) Proceedings of the third international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 114–120 Eddy SR (1995) Multiple alignment using hidden Markov models. In: Rawlings C, Clark D, Altman R, Hunter L, Lengauer T, Wodak S (eds) Proceedings of the third international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 114–120
22.
go back to reference Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRef Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRef
23.
go back to reference Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700 Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
24.
go back to reference Zeng G, Zhang J, Chen Y, Yu Z, Yu M, Li H, Liu Z, Chen M, Lu L, Hu C (2011) Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresour Technol 102:9026–9032CrossRef Zeng G, Zhang J, Chen Y, Yu Z, Yu M, Li H, Liu Z, Chen M, Lu L, Hu C (2011) Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresour Technol 102:9026–9032CrossRef
25.
go back to reference Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701CrossRef Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C (2011) Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour Technol 102:3694–3701CrossRef
26.
go back to reference Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625CrossRef Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625CrossRef
27.
go back to reference Kowalchuk GA, Naoumenko ZS, Derikx PJL, Felske A, Stephen JR, Arkhipchenko IA (1999) Molecular analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in compost and composted materials. Appl Environ Microbiol 65:396–403 Kowalchuk GA, Naoumenko ZS, Derikx PJL, Felske A, Stephen JR, Arkhipchenko IA (1999) Molecular analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in compost and composted materials. Appl Environ Microbiol 65:396–403
28.
go back to reference Jiang Q-Q, Bakken LR (1999) Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria. Appl Environ Microbiol 65:2679–2684 Jiang Q-Q, Bakken LR (1999) Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria. Appl Environ Microbiol 65:2679–2684
29.
go back to reference Kozlowski JA, Price J, Stein LY (2014) Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718. Appl Environ Microbiol 80:4930–4935CrossRef Kozlowski JA, Price J, Stein LY (2014) Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718. Appl Environ Microbiol 80:4930–4935CrossRef
30.
go back to reference Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141 Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141
31.
go back to reference Zart D, Bock E (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169:282–286CrossRef Zart D, Bock E (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169:282–286CrossRef
32.
go back to reference Law Y, Ni B-J, Lant P, Yuan Z (2012) N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Res 46:3409–3419CrossRef Law Y, Ni B-J, Lant P, Yuan Z (2012) N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Res 46:3409–3419CrossRef
Metadata
Title
Identification of microbial populations contributing to nitrification-associated nitrous oxide emission during cattle manure composting process with forced aeration
Authors
Daisuke Inoue
Kazuko Sawada
Hirofumi Tsutsui
Taku Fujiwara
Publication date
01-03-2017
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 1/2018
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-017-0588-2

Other articles of this Issue 1/2018

Journal of Material Cycles and Waste Management 1/2018 Go to the issue