Skip to main content
Top

2023 | OriginalPaper | Chapter

11. II–VI Semiconductor-Based Humidity Sensors

Authors : Ghenadii Korotcenkov, Michail Ivanov, Vladimir Brinzari

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the problems associated with monitoring the amount of water vapors in the atmosphere. This is an important issue because, due to the unique properties of water, humidity of the atmosphere strongly affects living organisms, including humans, and materials. Currently, the most common devices used to measure humidity of the air are solid-state humidity sensors such as conductometric, capacitive, and quartz crystal microbalance-based sensors. Their construction and principles of operation are described in this chapter. It has been shown that the properties of II–VI compounds are very sensitive to changes in humidity; therefore, these materials can indeed be used to develop humidity sensors of indicated types. Examples of the implementation of humidity sensors both based on II–VI compounds and based on their composites with polymers are given. The use of 1D nanostructures of II–VI connections in the development of humidity sensors is also discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adamson AW, Gast AP. Physical chemistry of surface. New York: Wiley; 1997. Adamson AW, Gast AP. Physical chemistry of surface. New York: Wiley; 1997.
2.
go back to reference Bereir GA, Kline DE. Dynamic mechanical behaviour of polyimide. J Appl Polym Sci. 1968;12:593–604.CrossRef Bereir GA, Kline DE. Dynamic mechanical behaviour of polyimide. J Appl Polym Sci. 1968;12:593–604.CrossRef
3.
go back to reference Bhattacharjeea M, Bandyopadhyay D. Mechanisms of humidity sensing on a CdS nanoparticle coated paper sensor. Sens Actuators A Phys. 2019;285:241–7.CrossRef Bhattacharjeea M, Bandyopadhyay D. Mechanisms of humidity sensing on a CdS nanoparticle coated paper sensor. Sens Actuators A Phys. 2019;285:241–7.CrossRef
4.
go back to reference Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D. Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng. 2002;61–62:955–61.CrossRef Chatzandroulis S, Tserepi A, Goustouridis D, Normand P, Tsoukalas D. Fabrication of single crystal Si cantilevers using a dry release process and application in a capacitive-type humidity sensor. Microelectron Eng. 2002;61–62:955–61.CrossRef
5.
go back to reference Chen H, Shi D, Qi J, Wang B. Electronic and mechanical properties of ZnS nanowires with different surface adsorptions. Phys E. 2009;42:32–7.CrossRef Chen H, Shi D, Qi J, Wang B. Electronic and mechanical properties of ZnS nanowires with different surface adsorptions. Phys E. 2009;42:32–7.CrossRef
6.
go back to reference Chen Q, Nie M, Guo Y. Controlled synthesis and humidity sensing properties of CdS/polyaniline composite based on CdAl layered double hydroxide. Sensors Actuators B Chem. 2018;254:30–5.CrossRef Chen Q, Nie M, Guo Y. Controlled synthesis and humidity sensing properties of CdS/polyaniline composite based on CdAl layered double hydroxide. Sensors Actuators B Chem. 2018;254:30–5.CrossRef
7.
go back to reference Choudhari U, Jagtap S. Hydrothermally synthesized ZnSe nanoparticles for relative humidity sensing application. J Electron Mater. 2020;49:5903–16.CrossRefADS Choudhari U, Jagtap S. Hydrothermally synthesized ZnSe nanoparticles for relative humidity sensing application. J Electron Mater. 2020;49:5903–16.CrossRefADS
8.
go back to reference Demir R, Okur S, Seker M, Zor M. Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method. Ind Eng Chem Res. 2011;50:5606–10.CrossRef Demir R, Okur S, Seker M, Zor M. Humidity sensing properties of CdS nanoparticles synthesized by chemical bath deposition method. Ind Eng Chem Res. 2011;50:5606–10.CrossRef
9.
go back to reference Demir R, Okur S, Seker M. Electrical characterization of CdS nanoparticles for humidity sensing applications. Ind Eng Chem Res. 2012;51:3309–13.CrossRef Demir R, Okur S, Seker M. Electrical characterization of CdS nanoparticles for humidity sensing applications. Ind Eng Chem Res. 2012;51:3309–13.CrossRef
10.
go back to reference Dimitrov RI, Boyanov BS. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG. J Therm Anal Calorim. 2000;61:181–9.CrossRef Dimitrov RI, Boyanov BS. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG. J Therm Anal Calorim. 2000;61:181–9.CrossRef
11.
go back to reference Dimitrov RI, Moldovanska N, Bonev IK. Cadmium sulphide oxidation. Thermochim Acta. 2002;385:41–9.CrossRef Dimitrov RI, Moldovanska N, Bonev IK. Cadmium sulphide oxidation. Thermochim Acta. 2002;385:41–9.CrossRef
12.
go back to reference Du L, Zhang Y, Lei Y, Zhao H. Synthesis of high-quality CdS nanowires and their application as humidity sensors. Mater Lett. 2014;129:46–9.CrossRef Du L, Zhang Y, Lei Y, Zhao H. Synthesis of high-quality CdS nanowires and their application as humidity sensors. Mater Lett. 2014;129:46–9.CrossRef
13.
go back to reference Fang X, Zhai T, Gautam UK, Li L, Wua L, Bando Y, Golberg D. ZnS nanostructures: from synthesis to applications. Prog Mater Sci. 2011;56:175–287.CrossRef Fang X, Zhai T, Gautam UK, Li L, Wua L, Bando Y, Golberg D. ZnS nanostructures: from synthesis to applications. Prog Mater Sci. 2011;56:175–287.CrossRef
14.
go back to reference Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14:7881–939.CrossRefADS Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14:7881–939.CrossRefADS
15.
go back to reference Feng MH, Wang WC, Li XJ. Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array. J Alloys Compd. 2017;698:94–8.CrossRef Feng MH, Wang WC, Li XJ. Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy structure grown on silicon nanoporous pillar array. J Alloys Compd. 2017;698:94–8.CrossRef
16.
go back to reference Fleming WJ. A physical understanding of solid state humidity sensors. Soc Automot Eng Trans. 1981;90(2):1656–67. Fleming WJ. A physical understanding of solid state humidity sensors. Soc Automot Eng Trans. 1981;90(2):1656–67.
17.
go back to reference Fu XQ, Wang C, Yu HC, Wang YG, Wang TH. Fast humidity sensors based onCeO2 nanowires. Nanotechnology. 2007;18:145503.CrossRefADS Fu XQ, Wang C, Yu HC, Wang YG, Wang TH. Fast humidity sensors based onCeO2 nanowires. Nanotechnology. 2007;18:145503.CrossRefADS
18.
go back to reference Gimenez AJ, Luna-Barcenas G, Sanchez IC, Yanez-Limon JM. Paper-based ZnO oxygen sensor. IEEE Sensors J. 2015;15:1246–51.CrossRefADS Gimenez AJ, Luna-Barcenas G, Sanchez IC, Yanez-Limon JM. Paper-based ZnO oxygen sensor. IEEE Sensors J. 2015;15:1246–51.CrossRefADS
19.
go back to reference Goodell CM, Gilbert B, Weigand SJ, Banfield JF. Kinetics of the water adsorption driven structural transformation of ZnS nanoparticles. J Phys Chem C. 2008;112(13):4791–6.CrossRef Goodell CM, Gilbert B, Weigand SJ, Banfield JF. Kinetics of the water adsorption driven structural transformation of ZnS nanoparticles. J Phys Chem C. 2008;112(13):4791–6.CrossRef
20.
go back to reference Goswami N, Sen P. Water-induced stabilization of ZnS nanoparticles. Solid State Commun. 2004;132:791–4.CrossRefADS Goswami N, Sen P. Water-induced stabilization of ZnS nanoparticles. Solid State Commun. 2004;132:791–4.CrossRefADS
21.
go back to reference Gupta SS, van Huis MA. Adsorption study of a water molecule on vacancy-defected on polar CdS surfaces. J Phys Chem C. 2017;121(18):9815–24.CrossRef Gupta SS, van Huis MA. Adsorption study of a water molecule on vacancy-defected on polar CdS surfaces. J Phys Chem C. 2017;121(18):9815–24.CrossRef
23.
go back to reference He Y, Zhang M, Zhang N, Zhu D, Huang C, Kang L, et al. Paper-based ZnS:Cu alternating current electroluminescent devices for current humidity sensors with high–linearity and flexibility. Sensors. 2019;19:4607.CrossRefADS He Y, Zhang M, Zhang N, Zhu D, Huang C, Kang L, et al. Paper-based ZnS:Cu alternating current electroluminescent devices for current humidity sensors with high–linearity and flexibility. Sensors. 2019;19:4607.CrossRefADS
24.
go back to reference Hertl W. Surface chemical properties of zinc sulfide. Langmuir. 1988;4:594–8.CrossRef Hertl W. Surface chemical properties of zinc sulfide. Langmuir. 1988;4:594–8.CrossRef
25.
go back to reference Hsueh H-T, Hsiao Y-J, Lin Y-D, Wu C-L. Bifacial structures of ZnS humidity sensor and Cd-free CIGS photovoltaic cell as a self-powered device. IEEE Electron Dev Lett. 2014;35(12):1272–4.CrossRefADS Hsueh H-T, Hsiao Y-J, Lin Y-D, Wu C-L. Bifacial structures of ZnS humidity sensor and Cd-free CIGS photovoltaic cell as a self-powered device. IEEE Electron Dev Lett. 2014;35(12):1272–4.CrossRefADS
26.
go back to reference Huang F, Gilbert B, Zhang H, Banfield JF. Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Phys Rev Lett. 2004;92:155501.CrossRefADS Huang F, Gilbert B, Zhang H, Banfield JF. Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state. Phys Rev Lett. 2004;92:155501.CrossRefADS
27.
go back to reference Ishihara T, Matsubara S. Capacitive type gas sensors. J Electroceram. 1998;2(4):215–28.CrossRef Ishihara T, Matsubara S. Capacitive type gas sensors. J Electroceram. 1998;2(4):215–28.CrossRef
28.
go back to reference Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22:6856.CrossRef Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22:6856.CrossRef
29.
go back to reference Kannan PK, Saraswathi R, Rayappan JBB. CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram Int. 2014;40:13115–22.CrossRef Kannan PK, Saraswathi R, Rayappan JBB. CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram Int. 2014;40:13115–22.CrossRef
30.
go back to reference Korotcenkov G. Why do we need to control humidity? In: Korotcenkov G, editor. Handbook of humidity measurements, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018. p. 17–45. Korotcenkov G. Why do we need to control humidity? In: Korotcenkov G, editor. Handbook of humidity measurements, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018. p. 17–45.
31.
go back to reference Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018. Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 1: Spectroscopic methods of humidity measurement. Boca Raton: CRC Press; 2018.
32.
go back to reference Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 2: Electronic and electrical humidity sensors. Boca Raton: CRC Press; 2019.CrossRef Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 2: Electronic and electrical humidity sensors. Boca Raton: CRC Press; 2019.CrossRef
33.
go back to reference Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 3: Sensing materials and technologies. Boca Raton: CRC Press; 2020.CrossRef Korotcenkov G. Handbook of humidity measurement: methods, materials and technologies, vol. 3: Sensing materials and technologies. Boca Raton: CRC Press; 2020.CrossRef
34.
go back to reference Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials. 2020;10:1392.CrossRef Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials. 2020;10:1392.CrossRef
35.
go back to reference Kulwick BM. (1991) Humidity sensors. J Am Ceram Soc. 1991;74(4):697–708. Kulwick BM. (1991) Humidity sensors. J Am Ceram Soc. 1991;74(4):697–708.
36.
go back to reference Leung YP, Choy WCH, Yuk TI. Linearly resistive humidity sensor based on quasi one-dimensional ZnSe nanostructures. Chem Phys Lett. 2008;457:198–201.CrossRefADS Leung YP, Choy WCH, Yuk TI. Linearly resistive humidity sensor based on quasi one-dimensional ZnSe nanostructures. Chem Phys Lett. 2008;457:198–201.CrossRefADS
37.
go back to reference Liang Y-C, Liu S-L. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres. Nanoscale Res Lett. 2014;9:647.CrossRefADS Liang Y-C, Liu S-L. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres. Nanoscale Res Lett. 2014;9:647.CrossRefADS
38.
go back to reference Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron. 2020;168(15):112513.CrossRef Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron. 2020;168(15):112513.CrossRef
39.
go back to reference Long X, Chen J, Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: a DFT study. Appl Surf Sci. 2016;370:11–8.CrossRefADS Long X, Chen J, Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: a DFT study. Appl Surf Sci. 2016;370:11–8.CrossRefADS
40.
go back to reference Lu T, Zhang M, Guo S, Liu R. Humidity and salt sensor based on CdSSe nanowire chip. IOP Conf Series: Mater Sci Eng. 2019;569:022006.CrossRef Lu T, Zhang M, Guo S, Liu R. Humidity and salt sensor based on CdSSe nanowire chip. IOP Conf Series: Mater Sci Eng. 2019;569:022006.CrossRef
41.
go back to reference Luo M, Shao K, Long Z, Wang L, Peng C, Ouyang J, Na N. A paper-based plasma-assisted cataluminescence sensor for ethylene detection. Sens Actuators B Chem. 2017;240:132–41. Luo M, Shao K, Long Z, Wang L, Peng C, Ouyang J, Na N. A paper-based plasma-assisted cataluminescence sensor for ethylene detection. Sens Actuators B Chem. 2017;240:132–41.
42.
go back to reference McCafferty E, Zettlemoyer AC. Adsorption of water vapour on α-Fe2O3. Faraday Discuss. 1971;52:239–54.CrossRef McCafferty E, Zettlemoyer AC. Adsorption of water vapour on α-Fe2O3. Faraday Discuss. 1971;52:239–54.CrossRef
43.
go back to reference Moromoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J Phys Chem. 1969;73:243–8.CrossRef Moromoto T, Nagao M, Tokuda F. Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J Phys Chem. 1969;73:243–8.CrossRef
44.
go back to reference Muhammad F, Tahir M, Zeb M, Wahab F, Kalasad MN, Khan DN, Karimov KS. Cadmium selenide quantum dots: synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene). Sens Actuators B Chem. 2019;285:504–12. Muhammad F, Tahir M, Zeb M, Wahab F, Kalasad MN, Khan DN, Karimov KS. Cadmium selenide quantum dots: synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene). Sens Actuators B Chem. 2019;285:504–12.
45.
go back to reference Niarchos G, Dubourg G, Afroudakis G, Georgopoulos M, Tsouti V, Makarona E, Crnojevic-Bengin V, Tsamis C. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications. Sensors. 2017;17:516.CrossRefADS Niarchos G, Dubourg G, Afroudakis G, Georgopoulos M, Tsouti V, Makarona E, Crnojevic-Bengin V, Tsamis C. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications. Sensors. 2017;17:516.CrossRefADS
46.
go back to reference Nitta T. Ceramic humidity sensor. Ind Eng Chem Prod Res Dev. 1981;20:669–74.CrossRef Nitta T. Ceramic humidity sensor. Ind Eng Chem Prod Res Dev. 1981;20:669–74.CrossRef
47.
go back to reference Okur S, Uzar N, Tekguzel N, Erol A, Arıkan MC. Synthesis and humidity sensing analysis of ZnS nanowires. Phys E. 2012;44:1103–7.CrossRef Okur S, Uzar N, Tekguzel N, Erol A, Arıkan MC. Synthesis and humidity sensing analysis of ZnS nanowires. Phys E. 2012;44:1103–7.CrossRef
48.
go back to reference Parangusan H, Bhadra J, Ahmad Z, Mallick S, Touati F, Al-Than N. Capacitive type humidity sensor based on PANI decorated Cu-ZnS porous microspheres. Talanta. 2020;219:121361.CrossRef Parangusan H, Bhadra J, Ahmad Z, Mallick S, Touati F, Al-Than N. Capacitive type humidity sensor based on PANI decorated Cu-ZnS porous microspheres. Talanta. 2020;219:121361.CrossRef
49.
go back to reference Ponec V, Knor Z, Cerný S. Adsorption on solids. London: Butterworth; 1974. p. 405. Ponec V, Knor Z, Cerný S. Adsorption on solids. London: Butterworth; 1974. p. 405.
50.
go back to reference Rittersma ZM. Recent achievements in miniaturised humidity sensors–a review of transduction techniques. Sens Actuators A Phys. 2002;96:196–210. Rittersma ZM. Recent achievements in miniaturised humidity sensors–a review of transduction techniques. Sens Actuators A Phys. 2002;96:196–210.
51.
go back to reference Sager K, Schroth A, Nakladal A, Gerlach G. Humidity-dependent mechanical properties of polyimide films and their use for IC-compatible humidity sensors. Sensors Actuators A Phys. 1996;53:330–4.CrossRef Sager K, Schroth A, Nakladal A, Gerlach G. Humidity-dependent mechanical properties of polyimide films and their use for IC-compatible humidity sensors. Sensors Actuators A Phys. 1996;53:330–4.CrossRef
52.
go back to reference Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys. 1959;155:206–22.CrossRefADS Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys. 1959;155:206–22.CrossRefADS
53.
go back to reference Spomer LA, Tibbitts TW. Humidity. In: Langhans RW, Tibbitts TW, editors. Plant growth chamber handbook. Ames: Iowa State University; 1997. p. 43–64. Spomer LA, Tibbitts TW. Humidity. In: Langhans RW, Tibbitts TW, editors. Plant growth chamber handbook. Ames: Iowa State University; 1997. p. 43–64.
54.
go back to reference Srivastava R. Humidity sensor: an overview. Int J Green Nanotechnol. 2012;4:302–9.CrossRef Srivastava R. Humidity sensor: an overview. Int J Green Nanotechnol. 2012;4:302–9.CrossRef
55.
go back to reference Turkdogan S. Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM. J Mater Sci Mater Electron. 2019;30:10427–34.CrossRef Turkdogan S. Bandgap engineered II–VI quaternary alloys and their humidity sensing performance analyzed by QCM. J Mater Sci Mater Electron. 2019;30:10427–34.CrossRef
56.
go back to reference Üzar N, Okur S, Arikana MC. Investigation of humidity sensing properties of ZnS nanowires synthesized by vapor liquid solid (VLS) technique. Sens. Actuators A. 2011;167:188–93.CrossRef Üzar N, Okur S, Arikana MC. Investigation of humidity sensing properties of ZnS nanowires synthesized by vapor liquid solid (VLS) technique. Sens. Actuators A. 2011;167:188–93.CrossRef
57.
go back to reference Vashist SK, Vashist P. Recent advances in quartz crystal microbalance-based sensors. J Sensors. 2011;2011:571405.CrossRef Vashist SK, Vashist P. Recent advances in quartz crystal microbalance-based sensors. J Sensors. 2011;2011:571405.CrossRef
58.
go back to reference Visscher GJW. Chapter 72: Humidity and moisture measurement. In: Webster JG, editor. The measurement, instrumentation, and sensors: handbook. Boca Raton: CRC; 1999. Visscher GJW. Chapter 72: Humidity and moisture measurement. In: Webster JG, editor. The measurement, instrumentation, and sensors: handbook. Boca Raton: CRC; 1999.
59.
go back to reference Wiederhold PR. Water vapor measurement: methods and instrumentation. New York: CRC Press; 1997. Wiederhold PR. Water vapor measurement: methods and instrumentation. New York: CRC Press; 1997.
60.
go back to reference Wang M, Zhang Q, Hao W, Sun Z-X. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate. Chem Cent J. 2011;5:73.CrossRef Wang M, Zhang Q, Hao W, Sun Z-X. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate. Chem Cent J. 2011;5:73.CrossRef
61.
go back to reference Yan W, Hu C, Xi Y, Wan B, He X, Zhang M, Zhang Y. ZnSe nanorods prepared in hydroxide-melts and their application as a humidity sensor. Mater Res Bull. 2009;44:1205–8.CrossRef Yan W, Hu C, Xi Y, Wan B, He X, Zhang M, Zhang Y. ZnSe nanorods prepared in hydroxide-melts and their application as a humidity sensor. Mater Res Bull. 2009;44:1205–8.CrossRef
62.
go back to reference Zhang H, Gilbert B, Huang F, Banfield JF. Water-driven structure transformation in nanoparticles at room temperature. Nature. 2003;424:1025–9.CrossRefADS Zhang H, Gilbert B, Huang F, Banfield JF. Water-driven structure transformation in nanoparticles at room temperature. Nature. 2003;424:1025–9.CrossRefADS
63.
go back to reference Zhang H, Rustad JR, Banfield JF. Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. J Phys Chem A. 2007;111:5008–14.CrossRef Zhang H, Rustad JR, Banfield JF. Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. J Phys Chem A. 2007;111:5008–14.CrossRef
64.
go back to reference Zhang M, Guo S, Weller D, Hao Y, Wang X, Ding C, et al. CdSSe nanowire-chip based wearable sweat sensor. J Nanobiotechnology. 2019;17:42.CrossRef Zhang M, Guo S, Weller D, Hao Y, Wang X, Ding C, et al. CdSSe nanowire-chip based wearable sweat sensor. J Nanobiotechnology. 2019;17:42.CrossRef
Metadata
Title
II–VI Semiconductor-Based Humidity Sensors
Authors
Ghenadii Korotcenkov
Michail Ivanov
Vladimir Brinzari
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_11

Premium Partners