Skip to main content
Top

2023 | OriginalPaper | Chapter

10. Nanomaterial-Based Electric and Electronic Gas Sensors

Authors : Andrea Gaiardo, Barbara Fabbri, Matteo Valt

Published in: Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Great attention has been dedicated to the development and use of solid-state gas sensors based on nanostructured semiconductors in recent decades. Metal oxide semiconductors (MOSs) are definitely the most investigated materials, but they have shown several shortcomings, including the lack of selectivity and stability over time, which have limited their use in many applications. This has led researchers to design and synthesise advanced nanostructured materials based on other types of semiconductors, able to overcome the limitations of MOSs towards the development of devices with optimised sensing performance. Among several alternatives, nanostructured II–VI transition metal chalcogenides (TMCs) are promising candidates for gas sensor development, due to their very interesting physicochemical features. These include: (i) wide and tunable bandgap; (ii) size-tunable radiation absorption and emission; (iii) catalytic and photocatalytic properties and (iv) the possibility to tune the nanostructure morphology and crystal structure by using simple and inexpensive methods. Although scarcely investigated in the gas sensing field so far, preliminary studies published over the last 10 years have shown peculiar sensing properties of TMCs, which could open up a future integration of these materials into commercial gas monitoring devices.
This chapter presents a critical analysis of the state of the art related to the synthesis and use of II–VI TMC nanomaterials (NMs) for the development of electrical and electronic gas sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yuan Z, Li R, Meng F, Zhang J, Zuo K, Han E. Approaches to enhancing gas sensing properties: a review. Sensors (Basel). 2019;19(7):1495.CrossRefADS Yuan Z, Li R, Meng F, Zhang J, Zuo K, Han E. Approaches to enhancing gas sensing properties: a review. Sensors (Basel). 2019;19(7):1495.CrossRefADS
2.
go back to reference Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors (Basel). 2016;16(3):296.CrossRefADS Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G. Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors (Basel). 2016;16(3):296.CrossRefADS
3.
go back to reference Fabbri B, Bonoldi L, Guidi V, Cruciani G, Casotti D, Malagù C, et al. Crystalline microporous organosilicates with reversed functionalities of organic and inorganic components for room-temperature gas sensing. ACS Appl Mater Interfaces. 2017;9(29):24812–20.CrossRef Fabbri B, Bonoldi L, Guidi V, Cruciani G, Casotti D, Malagù C, et al. Crystalline microporous organosilicates with reversed functionalities of organic and inorganic components for room-temperature gas sensing. ACS Appl Mater Interfaces. 2017;9(29):24812–20.CrossRef
4.
go back to reference Liu L, Li X, Dutta PK, Wang J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens Actuators B Chem. 2013;185:1–9.CrossRef Liu L, Li X, Dutta PK, Wang J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens Actuators B Chem. 2013;185:1–9.CrossRef
5.
go back to reference Zhang C, Boudiba A, De Marco P, Snyders R, Olivier M-G, Debliquy M. Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens Actuators B Chem. 2013;181:395–401.CrossRef Zhang C, Boudiba A, De Marco P, Snyders R, Olivier M-G, Debliquy M. Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens Actuators B Chem. 2013;181:395–401.CrossRef
6.
go back to reference Ossai CI, Raghavan N. Nanostructure and nanomaterial characterization, growth mechanisms, and applications. Nanotechnol Rev. 2018;7(2):209–31.CrossRef Ossai CI, Raghavan N. Nanostructure and nanomaterial characterization, growth mechanisms, and applications. Nanotechnol Rev. 2018;7(2):209–31.CrossRef
7.
go back to reference Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured gas sensors: from air quality and environmental monitoring to healthcare and medical applications. Nano. 2021;11(8):1927. Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured gas sensors: from air quality and environmental monitoring to healthcare and medical applications. Nano. 2021;11(8):1927.
8.
go back to reference Zhou X, Xue Z, Chen X, Huang C, Bai W, Lu Z, Wang T. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B. 2020;8(16):3231–48.CrossRef Zhou X, Xue Z, Chen X, Huang C, Bai W, Lu Z, Wang T. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B. 2020;8(16):3231–48.CrossRef
10.
go back to reference Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48(1):1–29.CrossRefADS Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48(1):1–29.CrossRefADS
11.
go back to reference Pokropivny VV, Skorokhod VV. New dimensionality classifications of nanostructures. Physica E Low Dimens Syst Nanostruct. 2008;40(7):2521–5.CrossRefADS Pokropivny VV, Skorokhod VV. New dimensionality classifications of nanostructures. Physica E Low Dimens Syst Nanostruct. 2008;40(7):2521–5.CrossRefADS
12.
go back to reference Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. Interface Sci Technol. 2019;28:1–27.CrossRef Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. Interface Sci Technol. 2019;28:1–27.CrossRef
13.
go back to reference Zhou T, Zhang T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors. Small Methods. 2021;5(9):2100515.CrossRef Zhou T, Zhang T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors. Small Methods. 2021;5(9):2100515.CrossRef
14.
go back to reference Della Ciana M, Valt M, Fabbri B, Bernardoni P, Guidi V, Morandi V. Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors. Rev Sci Instrum. 2021;92(7):074702.CrossRefADS Della Ciana M, Valt M, Fabbri B, Bernardoni P, Guidi V, Morandi V. Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors. Rev Sci Instrum. 2021;92(7):074702.CrossRefADS
15.
go back to reference Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478–598.CrossRef Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478–598.CrossRef
16.
go back to reference Korotcenkov G. Handbook of gas sensor materials. New York: Springer; 2013. p. 167–95.CrossRef Korotcenkov G. Handbook of gas sensor materials. New York: Springer; 2013. p. 167–95.CrossRef
17.
go back to reference Malagú C, Giberti A, Morandi S, Aldao CM. Electrical and spectroscopic analysis in nanostructured SnO2: “long-term” resistance drift is due to in-diffusion. Int J Appl Phys. 2011;110(9):093711.CrossRefADS Malagú C, Giberti A, Morandi S, Aldao CM. Electrical and spectroscopic analysis in nanostructured SnO2: “long-term” resistance drift is due to in-diffusion. Int J Appl Phys. 2011;110(9):093711.CrossRefADS
18.
go back to reference Nesheva D. Nanosized and nanostructured II-VI semiconductors: chemical sensor applications. In: Vaseashta A, Braman E, Susmann P, editors. Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism, NATO science for peace and security series a: chemistry and biology. Dordrecht: Springer; 2012. p. 159–64.CrossRef Nesheva D. Nanosized and nanostructured II-VI semiconductors: chemical sensor applications. In: Vaseashta A, Braman E, Susmann P, editors. Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism, NATO science for peace and security series a: chemistry and biology. Dordrecht: Springer; 2012. p. 159–64.CrossRef
19.
go back to reference Neri G. First fifty years of chemoresistive gas sensors. Chemosensors. 2015;3(1):1–20.CrossRef Neri G. First fifty years of chemoresistive gas sensors. Chemosensors. 2015;3(1):1–20.CrossRef
20.
go back to reference Valt M, Fabbri B, Gaiardo A, Gherardi S, Casotti D, Cruciani G, et al. Aza-crown-ether functionalized graphene oxide for gas sensing and cation trapping applications. Mater Res Express. 2019;6(7):075603.CrossRefADS Valt M, Fabbri B, Gaiardo A, Gherardi S, Casotti D, Cruciani G, et al. Aza-crown-ether functionalized graphene oxide for gas sensing and cation trapping applications. Mater Res Express. 2019;6(7):075603.CrossRefADS
21.
go back to reference Valt M, Caporali M, Fabbri B, Gaiardo A, Krik S, Iacob E, et al. Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl Mater Interfaces. 2021;13(37):44711–22.CrossRef Valt M, Caporali M, Fabbri B, Gaiardo A, Krik S, Iacob E, et al. Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities. ACS Appl Mater Interfaces. 2021;13(37):44711–22.CrossRef
22.
go back to reference Gaiardo A, Fabbri B, Giberti A, Valt M, Gherardi S, Guidi V, et al. Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sens Actuators B Chem. 2020;305:127485.CrossRef Gaiardo A, Fabbri B, Giberti A, Valt M, Gherardi S, Guidi V, et al. Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sens Actuators B Chem. 2020;305:127485.CrossRef
23.
go back to reference Zhang L, Dong R, Zhu Z, Wang S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B Chem. 2017;245:112–21.CrossRef Zhang L, Dong R, Zhu Z, Wang S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B Chem. 2017;245:112–21.CrossRef
24.
go back to reference Shakil MA, Das S, Rahman MA, Akther US, Majumdar MKH, Rahman MK. A review on zinc sulphide thin film fabrication for various applications based on doping elements. Mater Sci Appl. 2018;9(9):751–78. Shakil MA, Das S, Rahman MA, Akther US, Majumdar MKH, Rahman MK. A review on zinc sulphide thin film fabrication for various applications based on doping elements. Mater Sci Appl. 2018;9(9):751–78.
25.
go back to reference Chizhov A, Rumyantseva M, Gaskov A. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nano. 2021;11(4):892. Chizhov A, Rumyantseva M, Gaskov A. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nano. 2021;11(4):892.
26.
go back to reference Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.CrossRefADS Giberti A, Fabbri B, Gaiardo A, Guidi V, Malagù C. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity. Appl Phys Lett. 2014;104(22):222102.CrossRefADS
27.
go back to reference Zhang Q, Li H, Ma Y, Zhai T. ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci. 2016;83:472–535.CrossRef Zhang Q, Li H, Ma Y, Zhai T. ZnSe nanostructures: synthesis, properties and applications. Prog Mater Sci. 2016;83:472–535.CrossRef
28.
go back to reference Galstyan V. “Quantum dots: perspectives in next-generation chemical gas sensors” – a review. Anal Chim Acta. 2021;1152:238192.CrossRef Galstyan V. “Quantum dots: perspectives in next-generation chemical gas sensors” – a review. Anal Chim Acta. 2021;1152:238192.CrossRef
29.
go back to reference Mishra RK, Choi G-J, Choi H-J, Gwag J-S. ZnS quantum dot based acetone sensor for monitoring health-hazardous gases in indoor/outdoor environment. Micromachines. 2021;12(6):598.CrossRef Mishra RK, Choi G-J, Choi H-J, Gwag J-S. ZnS quantum dot based acetone sensor for monitoring health-hazardous gases in indoor/outdoor environment. Micromachines. 2021;12(6):598.CrossRef
30.
go back to reference Chizhov A, Vasiliev R, Rumyantseva M, Krylov I, Drozdov K, Batuk M, et al. Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD. Front Mater. 2019;6:231.CrossRefADS Chizhov A, Vasiliev R, Rumyantseva M, Krylov I, Drozdov K, Batuk M, et al. Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD. Front Mater. 2019;6:231.CrossRefADS
31.
go back to reference Dun M, Tan J, Tan W, Tang M, Huang X. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery. Sens Actuators B Chem. 2019;298:126839.CrossRef Dun M, Tan J, Tan W, Tang M, Huang X. CdS quantum dots supported by ultrathin porous nanosheets assembled into hollowed-out Co3O4 microspheres: a room-temperature H2S gas sensor with ultra-fast response and recovery. Sens Actuators B Chem. 2019;298:126839.CrossRef
32.
go back to reference Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.CrossRefADS Chizhov AS, Rumyantseva MN, Vasiliev RB, Filatova DG, Drozdov KA, Krylov IV, et al. Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films. 2016;618:253–62.CrossRefADS
33.
go back to reference Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B Chem. 2015;207:504–10.CrossRef Giberti A, Casotti D, Cruciani G, Fabbri B, Gaiardo A, Guidi V, et al. Electrical conductivity of CdS films for gas sensing: selectivity properties to alcoholic chains. Sens Actuators B Chem. 2015;207:504–10.CrossRef
34.
go back to reference Li L-S, Hu J, Yang W, Alivisatos AP. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001;1(7):349–51.CrossRefADS Li L-S, Hu J, Yang W, Alivisatos AP. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001;1(7):349–51.CrossRefADS
35.
go back to reference Li J, Wang L-W. Comparison between quantum confinement effects of quantum wires and dots. Chem Mater. 2004;16(21):4012–5.CrossRef Li J, Wang L-W. Comparison between quantum confinement effects of quantum wires and dots. Chem Mater. 2004;16(21):4012–5.CrossRef
36.
go back to reference Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nano. 2020;10(7):1392. Korotcenkov G. Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nano. 2020;10(7):1392.
37.
go back to reference Zhu L, Feng C, Li F, Zhang D, Li C, Wang Y, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv. 2014;4(106):61691–7.CrossRefADS Zhu L, Feng C, Li F, Zhang D, Li C, Wang Y, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv. 2014;4(106):61691–7.CrossRefADS
38.
go back to reference Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22(14):6856–61.CrossRef Jiang P, Jie J, Yu Y, Wang Z, Xie C, Zhang X, et al. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. J Mater Chem. 2012;22(14):6856–61.CrossRef
39.
go back to reference Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sens Actuators B Chem. 2013;188:1270–6.CrossRef Park S, An S, Ko H, Lee S, Lee C. Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sens Actuators B Chem. 2013;188:1270–6.CrossRef
40.
go back to reference Park S, Kim S, Lee WI, Kim K-K, Lee C. Room temperature, ppb-level NO2 gas sensing of multiplenetworked ZnSe nanowire sensors under UV illumination. Beilstein J Nanotechnol. 2014;5(1):1836–41.CrossRef Park S, Kim S, Lee WI, Kim K-K, Lee C. Room temperature, ppb-level NO2 gas sensing of multiplenetworked ZnSe nanowire sensors under UV illumination. Beilstein J Nanotechnol. 2014;5(1):1836–41.CrossRef
41.
go back to reference Ma X, Guo S, Shen J, Chen Y, Chen C, Sun L, et al. Synthesis and enhanced gas sensing properties of Au-nanoparticle decorated CdS nanowires. RSC Adv. 2016;6(75):70907–12.CrossRefADS Ma X, Guo S, Shen J, Chen Y, Chen C, Sun L, et al. Synthesis and enhanced gas sensing properties of Au-nanoparticle decorated CdS nanowires. RSC Adv. 2016;6(75):70907–12.CrossRefADS
42.
go back to reference Lin Z, Liao F, Zhu L, Lu S, Sheng M, Gao S, et al. Visible light enhanced gas sensing of CdSe nanoribbons of ethanol. CrystEngComm. 2014;16(20):4231–5.CrossRef Lin Z, Liao F, Zhu L, Lu S, Sheng M, Gao S, et al. Visible light enhanced gas sensing of CdSe nanoribbons of ethanol. CrystEngComm. 2014;16(20):4231–5.CrossRef
43.
go back to reference Zhang W, Wang S, Wang Y, Zhu Z, Gao X, Yang J, et al. ZnO@ZnS core/shell microrods with enhanced gas sensing properties. RSC Adv. 2015;5(4):2620–9.CrossRefADS Zhang W, Wang S, Wang Y, Zhu Z, Gao X, Yang J, et al. ZnO@ZnS core/shell microrods with enhanced gas sensing properties. RSC Adv. 2015;5(4):2620–9.CrossRefADS
44.
go back to reference Kim K-K, Kim D, Kang S-H, Park S. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires. Sens Actuators B Chem. 2017;248:43–9.CrossRef Kim K-K, Kim D, Kang S-H, Park S. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires. Sens Actuators B Chem. 2017;248:43–9.CrossRef
45.
go back to reference Gaponenko SV, Hilmi VD. Applied nanophotonics. Cambridge: Cambridge University Press; 2018.CrossRef Gaponenko SV, Hilmi VD. Applied nanophotonics. Cambridge: Cambridge University Press; 2018.CrossRef
46.
go back to reference Ghimpu L, Lupan O, Postica V, Strobel J, Kienle L, Terasa M-I, et al. Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivity. Mater Sci Semicond Process. 2019;100:275–82.CrossRef Ghimpu L, Lupan O, Postica V, Strobel J, Kienle L, Terasa M-I, et al. Individual CdS-covered aerographite microtubes for room temperature VOC sensing with high selectivity. Mater Sci Semicond Process. 2019;100:275–82.CrossRef
47.
go back to reference Li H-Y, Yoon J-W, Lee C-S, Lim K, Yoon J-W, Lee J-H. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963–70.CrossRef Li H-Y, Yoon J-W, Lee C-S, Lim K, Yoon J-W, Lee J-H. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array. Sens Actuators B Chem. 2018;255:2963–70.CrossRef
48.
go back to reference Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro-/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J. Preparation of a leaf-like CdS micro-/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem. 2012;22(34):17782–91.CrossRef
49.
go back to reference Wang G, Qin J, Zhou X, Deng Y, Wang H, Zhao Y, et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated inner architectures and superior sensing performance. Adv Funct Mater. 2018;28(51):1806144.CrossRef Wang G, Qin J, Zhou X, Deng Y, Wang H, Zhao Y, et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated inner architectures and superior sensing performance. Adv Funct Mater. 2018;28(51):1806144.CrossRef
50.
go back to reference Tao Z, Li Y, Zhang B, Sun G, Xiao M, Bala H, et al. Synthesis of urchin-like In2O3 hollow spheres for selective and quantitative detection of formaldehyde. Sens Actuators B Chem. 2019;298:126889.CrossRef Tao Z, Li Y, Zhang B, Sun G, Xiao M, Bala H, et al. Synthesis of urchin-like In2O3 hollow spheres for selective and quantitative detection of formaldehyde. Sens Actuators B Chem. 2019;298:126889.CrossRef
51.
go back to reference Zhao H, Lei Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater. 2020;10(28):2001460.CrossRef Zhao H, Lei Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater. 2020;10(28):2001460.CrossRef
52.
go back to reference Wulff G, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res. 2012;45(2):239–47.CrossRef Wulff G, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res. 2012;45(2):239–47.CrossRef
53.
go back to reference Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in biomimetic and nanostructured biohybrid materials. Adv Mater. 2010;22(3):323–36.CrossRef Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in biomimetic and nanostructured biohybrid materials. Adv Mater. 2010;22(3):323–36.CrossRef
54.
go back to reference Yuan J-J, Jin R-H. Temporally and spatially controlled silicification for self-generating polymer@silica hybrid nanotube on substrates with tunable film nanostructure. J Mater Chem. 2012;22(11):5080–8.CrossRef Yuan J-J, Jin R-H. Temporally and spatially controlled silicification for self-generating polymer@silica hybrid nanotube on substrates with tunable film nanostructure. J Mater Chem. 2012;22(11):5080–8.CrossRef
55.
go back to reference Rao W, Wang D, Kups T, Baradács E, Parditka B, Erdélyi Z, et al. Nanoporous gold nanoparticles and Au/Al2O3 hybrid nanoparticles with large tunability of plasmonic properties. ACS Appl Mater Interfaces. 2017;9(7):6273–81.CrossRef Rao W, Wang D, Kups T, Baradács E, Parditka B, Erdélyi Z, et al. Nanoporous gold nanoparticles and Au/Al2O3 hybrid nanoparticles with large tunability of plasmonic properties. ACS Appl Mater Interfaces. 2017;9(7):6273–81.CrossRef
56.
go back to reference Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, Du X-W. Arrays of ultrathin CdS nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2017;9(1):602–9.CrossRef Liu X-H, Yin P-F, Kulinich SA, Zhou Y-Z, Mao J, Ling T, Du X-W. Arrays of ultrathin CdS nanoflakes with high-energy surface for efficient gas detection. ACS Appl Mater Interfaces. 2017;9(1):602–9.CrossRef
57.
go back to reference Yeole B, Sen T, Hansora D, Mishra S. Polypyrrole/metal sulphide hybrid nanocomposites: synthesis, characterization and room temperature gas sensing properties. Mater Res. 2016;19(5):999–1007.CrossRef Yeole B, Sen T, Hansora D, Mishra S. Polypyrrole/metal sulphide hybrid nanocomposites: synthesis, characterization and room temperature gas sensing properties. Mater Res. 2016;19(5):999–1007.CrossRef
58.
go back to reference Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. Nanosci Nanotechnol. 2016;16(3):3026–9. Xiao J, Song C, Song M, Dong W, Li C, Yin Y. Preparation and gas sensing properties of hollow ZnS microspheres. Nanosci Nanotechnol. 2016;16(3):3026–9.
59.
go back to reference Hoa ND, Duy NV, Hieu NV. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications. Mater Res Bull. 2013;48(2):440–8.CrossRef Hoa ND, Duy NV, Hieu NV. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications. Mater Res Bull. 2013;48(2):440–8.CrossRef
60.
go back to reference Wang X, Qiu S, Liu J, He C, Lu G, Liu W. Synthesis of mesoporous SnO2 spheres and application in gas sensors. Eur J Inorg Chem. 2014;5:863–9.CrossRef Wang X, Qiu S, Liu J, He C, Lu G, Liu W. Synthesis of mesoporous SnO2 spheres and application in gas sensors. Eur J Inorg Chem. 2014;5:863–9.CrossRef
61.
go back to reference Teoh LG, Hung IM, Shieh J, Lai WH, Hon MH. High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem Solid-State Lett. 2003;6(8):G108–11.CrossRef Teoh LG, Hung IM, Shieh J, Lai WH, Hon MH. High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem Solid-State Lett. 2003;6(8):G108–11.CrossRef
62.
go back to reference Hoa ND, Duy NV, El-Safty SA, Hieu NV. Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater. 2015;2015:972025.CrossRef Hoa ND, Duy NV, El-Safty SA, Hieu NV. Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater. 2015;2015:972025.CrossRef
63.
go back to reference Nandhakumar I, Gabriel T, Li X, Attard G, Markham M, Smith D, et al. Optical properties of mesoporous II-VI semiconductor compound films. Chem Commun (Camb). 2004;4(12):1374–5.CrossRef Nandhakumar I, Gabriel T, Li X, Attard G, Markham M, Smith D, et al. Optical properties of mesoporous II-VI semiconductor compound films. Chem Commun (Camb). 2004;4(12):1374–5.CrossRef
64.
go back to reference Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef Xing R, Xue Y, Liu X, Liu B, Miao B, Kang W, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing. CrystEngComm. 2012;14(23):8044–8.CrossRef
65.
go back to reference Zhang Q, Ma S, Zhang R, Zhu K, Tie Y, Pei S. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J Alloys Compd. 2019;807:151650.CrossRef Zhang Q, Ma S, Zhang R, Zhu K, Tie Y, Pei S. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J Alloys Compd. 2019;807:151650.CrossRef
66.
go back to reference Jaiswal J, Singh P, Chandra R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens Actuators B Chem. 2021;327:128862.CrossRef Jaiswal J, Singh P, Chandra R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens Actuators B Chem. 2021;327:128862.CrossRef
67.
go back to reference Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef Liu W, Gu D, Li X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029–40.CrossRef
68.
go back to reference Bai H, Guo H, Tan Y, Wang J, Dong Y, Liu B, et al. Facile synthesis of mesoporous CdS/PbS/SnO2 composites for high-selectivity H2 gas sensor. Sens Actuators B Chem. 2021;340:129924.CrossRef Bai H, Guo H, Tan Y, Wang J, Dong Y, Liu B, et al. Facile synthesis of mesoporous CdS/PbS/SnO2 composites for high-selectivity H2 gas sensor. Sens Actuators B Chem. 2021;340:129924.CrossRef
69.
go back to reference Xue S, Cao S, Huang Z, Yang D, Zhang G. Improving gas-sensing performance based on MOS nanomaterials: a review. Materials. 2021;14(15):4263.CrossRefADS Xue S, Cao S, Huang Z, Yang D, Zhang G. Improving gas-sensing performance based on MOS nanomaterials: a review. Materials. 2021;14(15):4263.CrossRefADS
70.
go back to reference Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433.CrossRef Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433.CrossRef
71.
go back to reference Kim J-H, Mirzaei A, Kim HW, Kim SS. Variation of shell thickness in ZnO-SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases. Sens Actuators B Chem. 2020;302:127150.CrossRef Kim J-H, Mirzaei A, Kim HW, Kim SS. Variation of shell thickness in ZnO-SnO2 core-shell nanowires for optimizing sensing behaviors to CO, C6H6, and C7H8 gases. Sens Actuators B Chem. 2020;302:127150.CrossRef
72.
go back to reference Li Y, Shan L-X, Lian X-X, Zhou Q-J, An D-M. Enhanced NO2 sensing performance of ZnO@ZnS core-shell structure fabricated using a solution chemical method. Ceram Int. 2021;47(19):27411–9.CrossRef Li Y, Shan L-X, Lian X-X, Zhou Q-J, An D-M. Enhanced NO2 sensing performance of ZnO@ZnS core-shell structure fabricated using a solution chemical method. Ceram Int. 2021;47(19):27411–9.CrossRef
73.
go back to reference Mun Y, Park S, Ko H, Lee C, Lee S. NO2 gas sensing properties of ZnO/ZnS core-shell nanowires. J Korean Phys Soc. 2013;63(8):1595–600.CrossRef Mun Y, Park S, Ko H, Lee C, Lee S. NO2 gas sensing properties of ZnO/ZnS core-shell nanowires. J Korean Phys Soc. 2013;63(8):1595–600.CrossRef
74.
go back to reference Yang D, Cho I, Kim D, Lim MA, Li Z, Ok JG, Lee M, Park I. Gas sensor by direct growth and functionalization of metal oxide/metal sulfide core-shell nanowires on flexible substrates. ACS Appl Mater Interfaces. 2019;11(27):24298–307.CrossRef Yang D, Cho I, Kim D, Lim MA, Li Z, Ok JG, Lee M, Park I. Gas sensor by direct growth and functionalization of metal oxide/metal sulfide core-shell nanowires on flexible substrates. ACS Appl Mater Interfaces. 2019;11(27):24298–307.CrossRef
75.
go back to reference Tsai Y-S, Chou T-W, Xu CY, Chang Huang W, Lin CF, Wu YS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef Tsai Y-S, Chou T-W, Xu CY, Chang Huang W, Lin CF, Wu YS, et al. ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances. Ceram Int. 2019;45(14):17751–7.CrossRef
76.
go back to reference Li Y, Song S, Zhang L-B, Lian X-X, Shan L-X, Zhou Q-J. Fabrication of hollow porous ZnO@ZnS heterostructures via hydrothermal method and enhanced gas-sensing performance for ethanol. J Alloys Compd. 2021;855:157430.CrossRef Li Y, Song S, Zhang L-B, Lian X-X, Shan L-X, Zhou Q-J. Fabrication of hollow porous ZnO@ZnS heterostructures via hydrothermal method and enhanced gas-sensing performance for ethanol. J Alloys Compd. 2021;855:157430.CrossRef
77.
go back to reference Liu W, Gu D, Li X. Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. Sens Actuators B Chem. 2020;320:128365.CrossRef Liu W, Gu D, Li X. Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. Sens Actuators B Chem. 2020;320:128365.CrossRef
78.
go back to reference Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, et al. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens Actuators B Chem. 2018;264:263–78.CrossRef Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, et al. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens Actuators B Chem. 2018;264:263–78.CrossRef
79.
go back to reference Chueh Y-L, Tang S-Y, Yang C-C, Su T-Y, Yang T-Y, Wu S-C, et al. Design of core−shell quantum dots−3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS Nano. 2020;14(10):12668–78.CrossRef Chueh Y-L, Tang S-Y, Yang C-C, Su T-Y, Yang T-Y, Wu S-C, et al. Design of core−shell quantum dots−3D WS2 nanowall hybrid nanostructures with high-performance bifunctional sensing applications. ACS Nano. 2020;14(10):12668–78.CrossRef
Metadata
Title
Nanomaterial-Based Electric and Electronic Gas Sensors
Authors
Andrea Gaiardo
Barbara Fabbri
Matteo Valt
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-24000-3_10

Premium Partners