Skip to main content
Top
Published in: Cognitive Computation 3/2013

01-09-2013

Improved Path Integration Using a Modified Weight Combination Method

Authors: Warren A. Connors, Thomas Trappenberg

Published in: Cognitive Computation | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dynamic neural fields have been used extensively to model brain functions. These models coupled with the mechanisms of path integration have further been used to model idiothetic updates of hippocampal head and place representations, motor functions and have recently gained interest in the field of cognitive robotics. The sustained packet of activity of a neural field combined with a mechanism for moving this activity provides an elegant representation of state using a continuous attractor network. Path integration (PI) is dependent on the modulation of the collateral weights in the neural field. This modulation introduces an asymmetry in the activity packet, which causes a movement of the packet to a new location in the field. The following work provides an analysis of the PI mechanism, with respect to the speed of the packet movement and the robustness of the field under strong rotational inputs. This analysis illustrates challenges in controlling the activity packet size under strong rotational inputs, as well as a limited speed capability using the existing PI mechanism. As a result of this analysis, we propose a novel modification to the weight combination method to provide a higher speed capability and increased robustness of the field. The results of this proposed method are an increase in over two times the existing speed capability and a resistance of the field to break down under strong rotational inputs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organizing continuous attractor networks and motor function. Neural Netw. 2003;16:161–82.PubMedCrossRef Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organizing continuous attractor networks and motor function. Neural Netw. 2003;16:161–82.PubMedCrossRef
3.
go back to reference Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Netw. 2004;17:5–27.PubMedCrossRef Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Netw. 2004;17:5–27.PubMedCrossRef
4.
go back to reference Amari SI. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.PubMedCrossRef Amari SI. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.PubMedCrossRef
5.
go back to reference Petersen RS, Taylor JG. Reorganization of somato-sensory cortex after tactile training. In: Touretsky DS, editor. Advances in neural information processing, systems. Cambridge: MIT Press; 1996. p. 82–8. Petersen RS, Taylor JG. Reorganization of somato-sensory cortex after tactile training. In: Touretsky DS, editor. Advances in neural information processing, systems. Cambridge: MIT Press; 1996. p. 82–8.
6.
go back to reference Fellenz W, Taylor JG. Establishing retinotopy by lateral inhibition-type homogeneous neural fields. In: ESANN proceedings; 2000. p. 200–49. Fellenz W, Taylor JG. Establishing retinotopy by lateral inhibition-type homogeneous neural fields. In: ESANN proceedings; 2000. p. 200–49.
7.
go back to reference Taylor JG. Perception by neural networks. Neural Netw World. 1997;4:363–95. Taylor JG. Perception by neural networks. Neural Netw World. 1997;4:363–95.
8.
go back to reference Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: one-dimensional models of head direction cells. Netw Comput Neural Syst. 2002;13:217–42.CrossRef Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: one-dimensional models of head direction cells. Netw Comput Neural Syst. 2002;13:217–42.CrossRef
9.
go back to reference Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: two-dimensional models of place cells. Netw Comput Neural Syst. 2002;13:429–46.CrossRef Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: two-dimensional models of place cells. Netw Comput Neural Syst. 2002;13:429–46.CrossRef
10.
go back to reference Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor network models of hippocampal spatial view cells. Neurobiol Learn Mem. 2005;83:79–92.PubMedCrossRef Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor network models of hippocampal spatial view cells. Neurobiol Learn Mem. 2005;83:79–92.PubMedCrossRef
11.
go back to reference Trappenberg TP. Fundamentals of computational neuroscience. Oxford: Oxford University Press; 2002. Trappenberg TP. Fundamentals of computational neuroscience. Oxford: Oxford University Press; 2002.
12.
go back to reference Taylor JG. The race for consciousness. Bradford Books: Cambridge; 2001. Taylor JG. The race for consciousness. Bradford Books: Cambridge; 2001.
13.
15.
go back to reference Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80.PubMedCrossRef Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80.PubMedCrossRef
16.
go back to reference Taylor JG. Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern. 2000;80:393–409.CrossRef Taylor JG. Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern. 2000;80:393–409.CrossRef
17.
go back to reference Doubrovinski K, Herrmann JM. Stability of localized patterns in neural fields. Neural Comput. 2009;21:1125–44.PubMedCrossRef Doubrovinski K, Herrmann JM. Stability of localized patterns in neural fields. Neural Comput. 2009;21:1125–44.PubMedCrossRef
18.
go back to reference Jancke D, Erlhagen W, Schoner G, Dinse H. Shorter latencies for motion trajectories than for flashes in population responses of a cat primary visual cortex. J Physiol. 2004;556(3):971–82.PubMedCrossRef Jancke D, Erlhagen W, Schoner G, Dinse H. Shorter latencies for motion trajectories than for flashes in population responses of a cat primary visual cortex. J Physiol. 2004;556(3):971–82.PubMedCrossRef
19.
go back to reference Trappenberg TP, Dorris M, Munoz DP, Klein RM. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci. 2001;13:256–71.PubMedCrossRef Trappenberg TP, Dorris M, Munoz DP, Klein RM. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci. 2001;13:256–71.PubMedCrossRef
20.
go back to reference Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proc R Soc. 2002;269:1087–93. Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proc R Soc. 2002;269:1087–93.
21.
go back to reference Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J Neurosci. 1996;16:2112–26.PubMed Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J Neurosci. 1996;16:2112–26.PubMed
22.
go back to reference Milford MJ, Wyeth GF, Prasser D. RatSLAM: a hippocampal model for simulataneous localization and mapping. In: Proceedings of the IEEE international conference on robotics and automation; 2004. p. 403–8. Milford MJ, Wyeth GF, Prasser D. RatSLAM: a hippocampal model for simulataneous localization and mapping. In: Proceedings of the IEEE international conference on robotics and automation; 2004. p. 403–8.
23.
go back to reference Zibner SK, Faubel C, Iossifidis I, Schoner G. Dynamic neural fields as building blocks of a cortex-inspired architecture for robotic scene representation. IEEE Trans Auton Ment Dev. 2011;3:74–91.CrossRef Zibner SK, Faubel C, Iossifidis I, Schoner G. Dynamic neural fields as building blocks of a cortex-inspired architecture for robotic scene representation. IEEE Trans Auton Ment Dev. 2011;3:74–91.CrossRef
24.
go back to reference Erlhagen W, Bicho E. The dynamic neural field approach to cognitive robotics. J Neural Eng. 2006;3:36–54.CrossRef Erlhagen W, Bicho E. The dynamic neural field approach to cognitive robotics. J Neural Eng. 2006;3:36–54.CrossRef
25.
go back to reference McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M. Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci. 2006;7:663–78.PubMedCrossRef McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M. Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci. 2006;7:663–78.PubMedCrossRef
26.
go back to reference Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continous attractor neural network model. J Neurosci. 1997;17:5900–20.PubMed Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continous attractor neural network model. J Neurosci. 1997;17:5900–20.PubMed
27.
go back to reference Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL. 1995 A model of the neural basis of the rats sense of direction In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems, vol 7. Cambridge: MIT Press; 1995. p. 173–80. Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL. 1995 A model of the neural basis of the rats sense of direction In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems, vol 7. Cambridge: MIT Press; 1995. p. 173–80.
28.
go back to reference Xie X, Hahnloser RH, Seung HS. Double-ring network model of the head-direction system. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:041902. Xie X, Hahnloser RH, Seung HS. Double-ring network model of the head-direction system. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:041902.
Metadata
Title
Improved Path Integration Using a Modified Weight Combination Method
Authors
Warren A. Connors
Thomas Trappenberg
Publication date
01-09-2013
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2013
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9209-0

Other articles of this Issue 3/2013

Cognitive Computation 3/2013 Go to the issue

Premium Partner