Skip to main content
Top
Published in: Cognitive Computation 3/2013

01-09-2013

Activity Propagation in a Network of Coincidence-Detecting Neurons

Authors: Guido Bugmann, John G. Taylor

Published in: Cognitive Computation | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a formal analytical description of activity propagation in a simple multilayer network of coincidence-detecting neuron models receiving and generating Poisson spike trains. Simulations are also presented. In feedforward networks of coincidence-detecting neurons, the average firing rate decreases layer by layer, until information disappears. To prevent this, the model assumes that all neurons exhibit self-sustained firing, at a preset rate, initiated by the recognition of local features of the stimulus. Such firing can be interpreted as a form of local short-term memory. Inhibitory feedback signals from higher layers are then included in the model to minimize the duration of sustained firing, while ensuring information propagation. The theory predicts the time-dependent firing probability in successive layers and can be used to fit experimental data. The analyzed multilayer neural network exhibits stochastic propagation of neural activity. Such propagation has interesting features, such as information delocalization, that could explain backward masking. Stochastic propagation is normally observed in simulations of networks of spiking neurons. One of the contributions of this paper is to offer a method for formalizing and quantifying such effects, albeit in a simplified system. The mathematical analysis produces expressions for latencies in successive layers in dependence of the number of inputs of a neuron, the level of sustained firing, and the onset time jitter in the first layer of the network. In this model, latencies are not caused by the neuronal integration time, but by the waiting time before a coincidence of input spikes occurs. Numerical evaluation indicates that the retinal jitter may make a major contribution to inter-layer visual latencies. This could be confirmed experimentally. An interesting feature of the model is its potential to describe, within a single framework, a number of apparently unrelated characteristics of visual information processing, such as latencies, backward masking, synchronization, and temporal pattern of post-stimulus histograms. Due to its simplicity, the model can easily be understood, refined, and extended. This work has its origins in the nineties, but modeling latencies and firing probabilities in realistic biological systems is still an unsolved problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Such sub-network can be built using learning rules described in Bugmann [11].
 
Literature
1.
go back to reference Ahmed B, Douglas RJ, Martin KA, Nelson C. Polyneural innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 1994;341:39–49.PubMedCrossRef Ahmed B, Douglas RJ, Martin KA, Nelson C. Polyneural innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 1994;341:39–49.PubMedCrossRef
2.
go back to reference Bair W, Cavanaugh JR, Smith MA, Movshon JA. The timing of response onset and offset in macaque visual neurons. J. Neurosci. 2002;22:3189–205.PubMed Bair W, Cavanaugh JR, Smith MA, Movshon JA. The timing of response onset and offset in macaque visual neurons. J. Neurosci. 2002;22:3189–205.PubMed
3.
go back to reference Bergen JR, Julesz B. Rapid discrimination of visual patterns. IEEE Trans. 1983; SMC-13:857–63. Bergen JR, Julesz B. Rapid discrimination of visual patterns. IEEE Trans. 1983; SMC-13:857–63.
4.
go back to reference Best J, Reuss S, Dinse HRO. Lamina-specific differences of visual latencies following photic stimulations in the cat striate cortex. Brain Res. 1986;385:356–60.PubMedCrossRef Best J, Reuss S, Dinse HRO. Lamina-specific differences of visual latencies following photic stimulations in the cat striate cortex. Brain Res. 1986;385:356–60.PubMedCrossRef
5.
go back to reference Brody CD, Romo R, Kepecs A. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol. 2003;13(2):204–11.PubMedCrossRef Brody CD, Romo R, Kepecs A. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol. 2003;13(2):204–11.PubMedCrossRef
6.
go back to reference Boudreau CE, Ferster DE. Short-term depression in thalamocortical synapses of cat primary visual cortex. J Neurosci. 2005;25(31):7179–90.PubMedCrossRef Boudreau CE, Ferster DE. Short-term depression in thalamocortical synapses of cat primary visual cortex. J Neurosci. 2005;25(31):7179–90.PubMedCrossRef
7.
go back to reference Bugmann G. Summation and multiplication: two distinct operation domains of leaky integrate-and-fire neurons. Network. 1991;2:489–509.CrossRef Bugmann G. Summation and multiplication: two distinct operation domains of leaky integrate-and-fire neurons. Network. 1991;2:489–509.CrossRef
8.
go back to reference Bugmann G. Multiplying with neurons: Compensation of irregular input spike trains by using time-dependent synaptic efficiencies. Biol Cybern. 1992;68:87–92.PubMedCrossRef Bugmann G. Multiplying with neurons: Compensation of irregular input spike trains by using time-dependent synaptic efficiencies. Biol Cybern. 1992;68:87–92.PubMedCrossRef
9.
go back to reference Bugmann G. The neuronal computation time. In: Aleksander I, Taylor JG, editors. Artificial neural networks II. Amsterdam: Elsevier; 1992. p. 861–4. Bugmann G. The neuronal computation time. In: Aleksander I, Taylor JG, editors. Artificial neural networks II. Amsterdam: Elsevier; 1992. p. 861–4.
10.
go back to reference Bugmann G. Binding by synchronisation: a task dependence hypothesis. Brain Behav Sci. 1997;20:685–6.CrossRef Bugmann G. Binding by synchronisation: a task dependence hypothesis. Brain Behav Sci. 1997;20:685–6.CrossRef
11.
go back to reference Bugmann G. Modelling fast stimulus-response association learning along the occipito–parieto–frontal pathway following rule instructions. Brain Res. 2012;1434:73–89.PubMedCrossRef Bugmann G. Modelling fast stimulus-response association learning along the occipito–parieto–frontal pathway following rule instructions. Brain Res. 2012;1434:73–89.PubMedCrossRef
12.
go back to reference Bugmann G, Taylor JG. A stochastic short-term memory using a pRAM neuron and its potential applications. In: Beale R, Plumbley MD, editors. Recent advances in neural networks. Prentice Hall; 1993 (in press). Also avialable as Research Report NRG-93-01, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK. Bugmann G, Taylor JG. A stochastic short-term memory using a pRAM neuron and its potential applications. In: Beale R, Plumbley MD, editors. Recent advances in neural networks. Prentice Hall; 1993 (in press). Also avialable as Research Report NRG-93-01, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK.
13.
go back to reference Bugmann G, Taylor JG. A model for latencies in the visual system. In: Gielen S, Kappen B, editors. Proceedings of the international conference on artificial neural networks (ICANN ’93). Amsterdam: Springer; 1993. p. 165–8. Bugmann G, Taylor JG. A model for latencies in the visual system. In: Gielen S, Kappen B, editors. Proceedings of the international conference on artificial neural networks (ICANN ’93). Amsterdam: Springer; 1993. p. 165–8.
14.
go back to reference Bugmann G, Taylor JG. Role of Short-term memory in neural information propagation. In: Extended abstract book of the symposium on dynamics of neural processing, Washington, DC, June 6–8. 1994, p. 132–6. Bugmann G, Taylor JG. Role of Short-term memory in neural information propagation. In: Extended abstract book of the symposium on dynamics of neural processing, Washington, DC, June 6–8. 1994, p. 132–6.
15.
go back to reference Bugmann G, Taylor JGA top-down model for neuronal synchronization. Research Report NRG-94-02, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK. 1994. Bugmann G, Taylor JGA top-down model for neuronal synchronization. Research Report NRG-94-02, School of Computing, University of Plymouth, Plymouth PL4 8AA, UK. 1994.
16.
go back to reference Bugmann G. Determination of the fraction of active inputs required by a neuron to fire. Biosystems. 2007;89(1–3):154–9.PubMedCrossRef Bugmann G. Determination of the fraction of active inputs required by a neuron to fire. Biosystems. 2007;89(1–3):154–9.PubMedCrossRef
17.
go back to reference Bugmann G. A neural architecture for fast learning of stimulus-response associations. In: Proceedings of the IICAI ‘09, Tumkur, Bangalore. 2009; p. 828–41. Bugmann G. A neural architecture for fast learning of stimulus-response associations. In: Proceedings of the IICAI ‘09, Tumkur, Bangalore. 2009; p. 828–41.
18.
go back to reference Bugmann G, Christodoulou C, Taylor JG. Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput. 1997;9:985–1000.CrossRef Bugmann G, Christodoulou C, Taylor JG. Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput. 1997;9:985–1000.CrossRef
19.
go back to reference Burgess N, Hitch GJ. Towards a network model of the articulatory loop. J Mem Lang. 1992;31:429–60.CrossRef Burgess N, Hitch GJ. Towards a network model of the articulatory loop. J Mem Lang. 1992;31:429–60.CrossRef
20.
go back to reference Burgi P-Y, Pun T. Temporal analysis of contrast and geometrical selectivity in the early visual system. In: Blum P, editor Channels in the visual nervous system: neurophysiology, psychophisics and models. London: Freund; 1991. p. 273–88. Burgi P-Y, Pun T. Temporal analysis of contrast and geometrical selectivity in the early visual system. In: Blum P, editor Channels in the visual nervous system: neurophysiology, psychophisics and models. London: Freund; 1991. p. 273–88.
21.
go back to reference Celebrini S, Thorpe S, Trotter Y, Imbert M. Dynamics of orientation coding in area V1 of the awake primate. Vis Neurosci. 1993;10:811–25.PubMedCrossRef Celebrini S, Thorpe S, Trotter Y, Imbert M. Dynamics of orientation coding in area V1 of the awake primate. Vis Neurosci. 1993;10:811–25.PubMedCrossRef
22.
go back to reference Douglas RJ, Martin KAC. A functional microcircuit for cat visual cortex. J Physiol. 1991;440:735–69.PubMed Douglas RJ, Martin KAC. A functional microcircuit for cat visual cortex. J Physiol. 1991;440:735–69.PubMed
23.
24.
go back to reference Ferster D, Lindstrom S. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol. 1983;342:181–215.PubMed Ferster D, Lindstrom S. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol. 1983;342:181–215.PubMed
25.
go back to reference Funahashi S, Bruce CJ, Goldman-Rakic P. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61:331–49.PubMed Funahashi S, Bruce CJ, Goldman-Rakic P. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61:331–49.PubMed
26.
go back to reference Fuster JM, Bauer RH, Jervey JP. Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol. 1981;71:398–409.PubMedCrossRef Fuster JM, Bauer RH, Jervey JP. Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol. 1981;71:398–409.PubMedCrossRef
27.
go back to reference Garey LF, Dreher B, Robinson SR. The organization of the visual thalamus, chap 3. In: Dreher B, Robinson SR, editors. Neuroanatomy of the visual pathways and their development. Volume 3 of the series “vision and visual dysfunction”. London: MacMillan; 1991. p. 176–234. Garey LF, Dreher B, Robinson SR. The organization of the visual thalamus, chap 3. In: Dreher B, Robinson SR, editors. Neuroanatomy of the visual pathways and their development. Volume 3 of the series “vision and visual dysfunction”. London: MacMillan; 1991. p. 176–234.
28.
go back to reference Gorse D, Taylor JG. A general model of stochastic neural processing. Biol Cybern. 1990;63:299–306.CrossRef Gorse D, Taylor JG. A general model of stochastic neural processing. Biol Cybern. 1990;63:299–306.CrossRef
29.
go back to reference Gorse D, Taylor JG. Hardware realisable training algorithms. In: Proceedings of the international conference on neural networks, Paris, France; 1990. p. 821–4. Gorse D, Taylor JG. Hardware realisable training algorithms. In: Proceedings of the international conference on neural networks, Paris, France; 1990. p. 821–4.
30.
go back to reference Granger R, Ambros-Ingerson J, Staubli U, Lynch G. Memorial operation of multiple, interacting simulated brain structures. In: Gluck MA, Rumelhart D, editors. Neuroscience and connectionist theory. London: Lawrence Erlenbaum Associates; 1990. p. 95–129. Granger R, Ambros-Ingerson J, Staubli U, Lynch G. Memorial operation of multiple, interacting simulated brain structures. In: Gluck MA, Rumelhart D, editors. Neuroscience and connectionist theory. London: Lawrence Erlenbaum Associates; 1990. p. 95–129.
31.
go back to reference Grossberg S. Contour enhancement, short-term memory, and constancy in reverberating neural networks (reprinted in Grossberg S. Studies of mind and brain. D. Boston: Reidel; 1982. p. 334–78). Grossberg S. Contour enhancement, short-term memory, and constancy in reverberating neural networks (reprinted in Grossberg S. Studies of mind and brain. D. Boston: Reidel; 1982. p. 334–78).
32.
go back to reference Houghton G. The problem of serial order: a neural network model for sequence learning and recall. In Dale R, Mellish C, Zock M, editors. Current research in natural language generation. London: Academic Press; 1990. p. 287–319. Houghton G. The problem of serial order: a neural network model for sequence learning and recall. In Dale R, Mellish C, Zock M, editors. Current research in natural language generation. London: Academic Press; 1990. p. 287–319.
33.
go back to reference Humphrey GW, Muller HJ. Search via recursive rejection (SERR): a connectionist model of visual search. Cogn Psychol. 1993;25:43–110.CrossRef Humphrey GW, Muller HJ. Search via recursive rejection (SERR): a connectionist model of visual search. Cogn Psychol. 1993;25:43–110.CrossRef
34.
go back to reference Kawano K, Shidara M, Yamane S. Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following response. J Neurophysiol. 1992;67:680–703.PubMed Kawano K, Shidara M, Yamane S. Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following response. J Neurophysiol. 1992;67:680–703.PubMed
35.
go back to reference Kawano K, Shidara M, Watanabe Y, Yamane S. Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol. 1994;71:2305–24.PubMed Kawano K, Shidara M, Watanabe Y, Yamane S. Neural activity in cortical area MST of alert monkey during ocular following responses. J Neurophysiol. 1994;71:2305–24.PubMed
36.
go back to reference Lesica NA, Stanley GB. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J Neurosci. 2004;24(47):10731–40.PubMedCrossRef Lesica NA, Stanley GB. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J Neurosci. 2004;24(47):10731–40.PubMedCrossRef
37.
go back to reference Levick WR. Variation in the response latency of cat retinal ganglion cells. Vis Res. 1973;13:837–53.PubMedCrossRef Levick WR. Variation in the response latency of cat retinal ganglion cells. Vis Res. 1973;13:837–53.PubMedCrossRef
38.
go back to reference Logothetis NK, Pauls J, Poggio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995;5:552–63.PubMedCrossRef Logothetis NK, Pauls J, Poggio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995;5:552–63.PubMedCrossRef
39.
go back to reference Maunsell JHR, Gibson J. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992;68:1332–44.PubMed Maunsell JHR, Gibson J. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992;68:1332–44.PubMed
40.
go back to reference McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T. Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex. 2003;13(11):1219–31.PubMedCrossRef McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T. Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex. 2003;13(11):1219–31.PubMedCrossRef
41.
go back to reference Oram MW. Contrast induced changes in response latency depend on stimulus specificity. J Physiol Paris. 2010;104:167–75.PubMedCrossRef Oram MW. Contrast induced changes in response latency depend on stimulus specificity. J Physiol Paris. 2010;104:167–75.PubMedCrossRef
42.
go back to reference Oram MW, Perrett DI. Time course of neural responses discriminating different views of face and head. J Neurophysiol. 1992;68:70–84.PubMed Oram MW, Perrett DI. Time course of neural responses discriminating different views of face and head. J Neurophysiol. 1992;68:70–84.PubMed
44.
go back to reference Reich DS, Mechler F, Victor JD. Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol 2001;85:1039–50.PubMed Reich DS, Mechler F, Victor JD. Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol 2001;85:1039–50.PubMed
45.
go back to reference Rolls ET, Tovee MJ. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc R Soc Lond B. 1994;257(1348):9–15.CrossRef Rolls ET, Tovee MJ. Processing speed in the cerebral cortex and the neurophysiology of visual masking. Proc R Soc Lond B. 1994;257(1348):9–15.CrossRef
46.
go back to reference Roy SA, Alloway KD. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J Neurosci. 2001;21(7):2462–73.PubMed Roy SA, Alloway KD. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J Neurosci. 2001;21(7):2462–73.PubMed
47.
go back to reference Saito H-A. Hierarchical neural analysis of optical flow in the macaque visual pathway. In: Ono T, Squire LR, Raichle ME, Perret DI, Fukuda M, editors. Brain mechanisms of perception and memory. Oxford, NY: Oxford University Press; 1993. p. 121–40. Saito H-A. Hierarchical neural analysis of optical flow in the macaque visual pathway. In: Ono T, Squire LR, Raichle ME, Perret DI, Fukuda M, editors. Brain mechanisms of perception and memory. Oxford, NY: Oxford University Press; 1993. p. 121–40.
48.
go back to reference Sherman SM, Koch C. The control of retinogeniculate transmission in the mamalian lateral geniculate nucleus. Exp Brain Res 1986;63:1–20.PubMedCrossRef Sherman SM, Koch C. The control of retinogeniculate transmission in the mamalian lateral geniculate nucleus. Exp Brain Res 1986;63:1–20.PubMedCrossRef
49.
go back to reference Softky WR, Koch C. The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPs. J Neurosci. 1993;13:334–50.PubMed Softky WR, Koch C. The highly irregular firing of cortical-cells is inconsistent with temporal integration of random EPSPs. J Neurosci. 1993;13:334–50.PubMed
50.
go back to reference Thomson AM, Deuchars J. Temporal and spatial properties of local circuits in neocortex. Trends Neurosci. 1994;17:119–26.PubMedCrossRef Thomson AM, Deuchars J. Temporal and spatial properties of local circuits in neocortex. Trends Neurosci. 1994;17:119–26.PubMedCrossRef
51.
go back to reference Thorpe SJ, Imbert M. Biological constraints on connectionist modelling. In: Pfeifer R, et al., editors. Connectionnism in perspective. Amsterdam: Elsevier; 1989. p. 63–92. Thorpe SJ, Imbert M. Biological constraints on connectionist modelling. In: Pfeifer R, et al., editors. Connectionnism in perspective. Amsterdam: Elsevier; 1989. p. 63–92.
52.
go back to reference Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in single neurons in cat and monkey striate cortex. Vis Res. 1983;23:775–85.PubMedCrossRef Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in single neurons in cat and monkey striate cortex. Vis Res. 1983;23:775–85.PubMedCrossRef
53.
go back to reference Troyer TW, Miller KD. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 1997;9(5):971–83.PubMedCrossRef Troyer TW, Miller KD. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 1997;9(5):971–83.PubMedCrossRef
54.
go back to reference Van der Loos H, Glaser EM. Autapses in neocortex cerebri: Synapses between a pyramidal cell’s axon and its own dendrites. Brain Res. 1972;48:355–60.CrossRef Van der Loos H, Glaser EM. Autapses in neocortex cerebri: Synapses between a pyramidal cell’s axon and its own dendrites. Brain Res. 1972;48:355–60.CrossRef
55.
go back to reference van Rossum MCW, van der Meer MAA, Xiao D, Oram MW. Adaptive integration in the visual cortex by depressing recurrent cortical circuit. Neural Comput. 2008;20:1847–72.PubMedCrossRef van Rossum MCW, van der Meer MAA, Xiao D, Oram MW. Adaptive integration in the visual cortex by depressing recurrent cortical circuit. Neural Comput. 2008;20:1847–72.PubMedCrossRef
56.
go back to reference Verri A, Straforini M, Torre V. Computational aspects of motion perception in natural and artificial vision systems. Phil Trans Roy Soc Lond. 1992;337:429–43.CrossRef Verri A, Straforini M, Torre V. Computational aspects of motion perception in natural and artificial vision systems. Phil Trans Roy Soc Lond. 1992;337:429–43.CrossRef
57.
go back to reference Zipser D. Recurrent network model of the Neural mechanism of short-term active memory. Neural Comput. 1991;3:179–93.CrossRef Zipser D. Recurrent network model of the Neural mechanism of short-term active memory. Neural Comput. 1991;3:179–93.CrossRef
58.
go back to reference Zohary E, Hillman P, Hochstein S. Time course of perceptual discrimination and single neuron reliability. Biol Cybern. 1990;62:475–86.PubMedCrossRef Zohary E, Hillman P, Hochstein S. Time course of perceptual discrimination and single neuron reliability. Biol Cybern. 1990;62:475–86.PubMedCrossRef
Metadata
Title
Activity Propagation in a Network of Coincidence-Detecting Neurons
Authors
Guido Bugmann
John G. Taylor
Publication date
01-09-2013
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2013
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9216-1

Other articles of this Issue 3/2013

Cognitive Computation 3/2013 Go to the issue

Premium Partner