Skip to main content
Top
Published in: Cognitive Computation 3/2013

01-09-2013

Inference Through Embodied Simulation in Cognitive Robots

Authors: Vishwanathan Mohan, Pietro Morasso, Giulio Sandini, Stathis Kasderidis

Published in: Cognitive Computation | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In Professor Taylor’s own words, the most striking feature of any cognitive system is its ability to “learn and reason” cumulatively throughout its lifetime, the structure of its inferences both emerging and constrained by the structure of its bodily experiences. Understanding the computational/neural basis of embodied intelligence by reenacting the “developmental learning” process in cognitive robots and in turn endowing them with primitive capabilities to learn, reason and survive in “unstructured” environments (domestic and industrial) is the vision of the EU-funded DARWIN project, one of the last adventures Prof. Taylor embarked upon. This journey is about a year old at present, and our article describes the first developments in relation to the learning and reasoning capabilities of DARWIN robots. The novelty in the computational architecture stems from the incorporation of recent ideas firstly from the field of “connectomics” that attempts to explore the large-scale organization of the cerebral cortex and secondly from recent functional imaging and behavioral studies in support of the embodied simulation hypothesis. We show through the resulting behaviors’ of the robot that from a computational viewpoint, the former biological inspiration plays a central role in facilitating “functional segregation and global integration,” thus endowing the cognitive architecture with “small-world” properties. The latter on the other hand promotes the incessant interleaving of “top-down” and “bottom-up” information flows (that share computational/neural substrates) hence allowing learning and reasoning to “cumulatively” drive each other. How the robot learns about “objects” and simulates perception, learns about “action” and simulates action (in this case learning to “push” that follows pointing, reaching, grasping behaviors’) are used to illustrate central ideas. Finally, an example of how simulation of perception and action lead the robot to reason about how its world can change such that it becomes little bit more conducive toward realization of its internal goal (an assembly task) is used to describe how “object,” “action,” and “body” meet in the Darwin architecture and how inference emerges through embodied simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
DARWIN stands for Dexterous Assembler Robots Working with embodied INtelligence (www.​darwin-project.​eu).
 
Literature
1.
go back to reference Addis DR, Schacter DL. The hippocampus and imagining the future: where do we stand? Front Hum Neurosci. 2012;5. Article 173. Addis DR, Schacter DL. The hippocampus and imagining the future: where do we stand? Front Hum Neurosci. 2012;5. Article 173.
2.
go back to reference Addis DR, Pan L, Vu MA, Laiser N, Schacter DL. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia. 2009;47:2222–38.CrossRefPubMed Addis DR, Pan L, Vu MA, Laiser N, Schacter DL. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia. 2009;47:2222–38.CrossRefPubMed
3.
go back to reference Amari S. Dynamics of patterns formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.CrossRefPubMed Amari S. Dynamics of patterns formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.CrossRefPubMed
4.
go back to reference Barabasi AL (2003) Linked: the new science of networks. Boston: Perseus Books. ISBN-10:0738206679. Barabasi AL (2003) Linked: the new science of networks. Boston: Perseus Books. ISBN-10:0738206679.
6.
7.
go back to reference Bernstein N. The coordination and regulation of movements. Oxford: Pergamon Press; 1967. Bernstein N. The coordination and regulation of movements. Oxford: Pergamon Press; 1967.
8.
go back to reference Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90.CrossRefPubMed Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–90.CrossRefPubMed
9.
go back to reference Buccino G, Binkofski F, Fink GR. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.PubMed Buccino G, Binkofski F, Fink GR. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.PubMed
10.
go back to reference Buckner RL, Carroll DC. Self-projection and the brain. Trends Cogn Sci. 2007;2:49–57. [medline abstract].CrossRef Buckner RL, Carroll DC. Self-projection and the brain. Trends Cogn Sci. 2007;2:49–57. [medline abstract].CrossRef
11.
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. [medline abstract].CrossRefPubMed Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. [medline abstract].CrossRefPubMed
12.
go back to reference Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc B Biol Sci. 2009;364(1525):1831–40.CrossRef Bueti D, Walsh V. The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc B Biol Sci. 2009;364(1525):1831–40.CrossRef
13.
go back to reference Caeyenberghs K, van Roon D, Swinnen SP, Smits-Engelsman BC. Deficits in executed and imagined aiming performance in brain-injured children. Brain Cogn. 2009;69(1):154–61.CrossRefPubMed Caeyenberghs K, van Roon D, Swinnen SP, Smits-Engelsman BC. Deficits in executed and imagined aiming performance in brain-injured children. Brain Cogn. 2009;69(1):154–61.CrossRefPubMed
14.
go back to reference Chiel HJ, Beer RD. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997;20:553–7.CrossRefPubMed Chiel HJ, Beer RD. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997;20:553–7.CrossRefPubMed
15.
go back to reference Clark A. Being there: putting brain, body and world together again. Cambridge: MIT Press; 1997. Clark A. Being there: putting brain, body and world together again. Cambridge: MIT Press; 1997.
16.
go back to reference Damasio A. Self comes to mind: constructing the conscious brain. New York: Pantheon; 2010. Damasio A. Self comes to mind: constructing the conscious brain. New York: Pantheon; 2010.
17.
go back to reference Decety J. Do imagined and executed actions share the same neural substrate. Cog Brain Res. 1996;3:87–93.CrossRef Decety J. Do imagined and executed actions share the same neural substrate. Cog Brain Res. 1996;3:87–93.CrossRef
18.
go back to reference Decety J, Sommerville J. Motor cognition and mental simulation. In: Kosslyn SM, Smith E, editors. Cognitive psychology: mind and brain. New York: Prentice Hall; 2007. p. 451–81. Decety J, Sommerville J. Motor cognition and mental simulation. In: Kosslyn SM, Smith E, editors. Cognitive psychology: mind and brain. New York: Prentice Hall; 2007. p. 451–81.
19.
go back to reference Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.CrossRefPubMed Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.CrossRefPubMed
20.
go back to reference Feldman J. From molecule to metaphor: a neural theory of language. Cambridge, MA: MIT Press; 2006. Feldman J. From molecule to metaphor: a neural theory of language. Cambridge, MA: MIT Press; 2006.
21.
go back to reference Frey SH, Gerry VE. Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci. 2006;26:13194–201.CrossRefPubMed Frey SH, Gerry VE. Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci. 2006;26:13194–201.CrossRefPubMed
22.
go back to reference Fritzke B. A growing neural gas network learns topologies. In: Tesauro G, Touretzky D, Leen T, editors. Advances in neural information processing systems. 7th ed. Cambridge, MA: MIT Press; 1995. p. 625–32. Fritzke B. A growing neural gas network learns topologies. In: Tesauro G, Touretzky D, Leen T, editors. Advances in neural information processing systems. 7th ed. Cambridge, MA: MIT Press; 1995. p. 625–32.
23.
go back to reference Gallese V, Lakoff G. The brain’s concepts: the role of the sensory-motor system in reason and language. Cogn Neuropsychol. 2005;22:455–79.CrossRefPubMed Gallese V, Lakoff G. The brain’s concepts: the role of the sensory-motor system in reason and language. Cogn Neuropsychol. 2005;22:455–79.CrossRefPubMed
25.
go back to reference Georg Stork H (2012) Towards a scientific foundation for engineering cognitive systems—a European research agenda, its rationale and perspectives. BICA Elsevier Science publishers, 1:82–91. doi:10.1016/j.bica.2012.04.002. Georg Stork H (2012) Towards a scientific foundation for engineering cognitive systems—a European research agenda, its rationale and perspectives. BICA Elsevier Science publishers, 1:82–91. doi:10.​1016/​j.​bica.​2012.​04.​002.
26.
27.
go back to reference Glenberg A, Gallese V. Action-based language: a theory of language acquisition production and comprehension. Cortex. 2012;48(7):905–22.CrossRefPubMed Glenberg A, Gallese V. Action-based language: a theory of language acquisition production and comprehension. Cortex. 2012;48(7):905–22.CrossRefPubMed
28.
go back to reference Grafton ST. Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci. 2009;1156:97–117.CrossRefPubMed Grafton ST. Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci. 2009;1156:97–117.CrossRefPubMed
29.
go back to reference Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27:377–96.PubMed Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27:377–96.PubMed
30.
go back to reference Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159, 1479–93. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159, 1479–93.
31.
go back to reference Hassabis D, Maguire EA. The construction system of the brain. In: Bar M, editor. Predictions in the brain: using our past to generate a future. New York: Oxford University Press; 2011. Hassabis D, Maguire EA. The construction system of the brain. In: Bar M, editor. Predictions in the brain: using our past to generate a future. New York: Oxford University Press; 2011.
32.
go back to reference Hesslow G. Conscious thought as a simulation of behavior and perception. Trends Cogn Sci. 2002;6:242–7.CrossRefPubMed Hesslow G. Conscious thought as a simulation of behavior and perception. Trends Cogn Sci. 2002;6:242–7.CrossRefPubMed
33.
go back to reference Hesslow G, Jirenhed DA. The inner world of a simple robot. J Conscious Stud. 2007;14:85–96. Hesslow G, Jirenhed DA. The inner world of a simple robot. J Conscious Stud. 2007;14:85–96.
34.
go back to reference Hoffmann M, Gravato Marques H, et al. Body schema in robotics: a review. IEEE Trans Auton Mental Dev. 2010;2:304–24.CrossRef Hoffmann M, Gravato Marques H, et al. Body schema in robotics: a review. IEEE Trans Auton Mental Dev. 2010;2:304–24.CrossRef
35.
go back to reference Hofstadter DR. Gödel, Escher, Bach: an eternal golden braid. NY: Basic Books; 1979. Hofstadter DR. Gödel, Escher, Bach: an eternal golden braid. NY: Basic Books; 1979.
36.
go back to reference Hofstadter DR. I am a strange loop. NY: Basic Books; 2007. Hofstadter DR. I am a strange loop. NY: Basic Books; 2007.
37.
go back to reference Hopfield JJ. Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation. Neural Comput. 2008;20(5):1119–64.CrossRefPubMed Hopfield JJ. Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation. Neural Comput. 2008;20(5):1119–64.CrossRefPubMed
38.
go back to reference Hummel JE, Holyoak KJ. A symbolic-connectionist theory of relational inference and generalization. Psychol Rev. 2003;110:220–64.CrossRefPubMed Hummel JE, Holyoak KJ. A symbolic-connectionist theory of relational inference and generalization. Psychol Rev. 2003;110:220–64.CrossRefPubMed
39.
go back to reference Iacoboni M. Neurobiology of imitation. Annual review of psychology. Curr Opin Neurobiol. 2009;19(6):661–5.CrossRefPubMed Iacoboni M. Neurobiology of imitation. Annual review of psychology. Curr Opin Neurobiol. 2009;19(6):661–5.CrossRefPubMed
40.
go back to reference Iriki A, Sakura O. Neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction. Philos Trans R Soc Lond B Biol Sci. 2008;363:2229–41.CrossRefPubMed Iriki A, Sakura O. Neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction. Philos Trans R Soc Lond B Biol Sci. 2008;363:2229–41.CrossRefPubMed
41.
go back to reference Johnson M. The body in the mind: the bodily basis of meaning, imagination and reason. Chicago: University of Chicago Press; 1987. Johnson M. The body in the mind: the bodily basis of meaning, imagination and reason. Chicago: University of Chicago Press; 1987.
42.
go back to reference Kacelnik A, Chappell J, Weir AAS, Kenward B. Tool use and manufacture in birds. In: Bekoff M, editor. Encyclopedia of animal behavior, vol 3. Westport, CT: Greenwood Publishing Group; 2004. p. 1067–9. Kacelnik A, Chappell J, Weir AAS, Kenward B. Tool use and manufacture in birds. In: Bekoff M, editor. Encyclopedia of animal behavior, vol 3. Westport, CT: Greenwood Publishing Group; 2004. p. 1067–9.
43.
go back to reference Kohler E, et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002;297(5582):846–8.CrossRefPubMed Kohler E, et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002;297(5582):846–8.CrossRefPubMed
45.
go back to reference Kokinov BN, Petrov A. Integration of Memory and Reasoning in Analogy-Making: The AMBR Model, The Analogical Mind: Perspectives from Cognitive Science. Cambridge, MA: MIT Press; 2001. Kokinov BN, Petrov A. Integration of Memory and Reasoning in Analogy-Making: The AMBR Model, The Analogical Mind: Perspectives from Cognitive Science. Cambridge, MA: MIT Press; 2001.
46.
go back to reference Locher JL. The magic of M. C. Escher. Harry N. Abrams, Inc. 2000. ISBN 0-8109-6720-0. Locher JL. The magic of M. C. Escher. Harry N. Abrams, Inc. 2000. ISBN 0-8109-6720-0.
47.
go back to reference Marino BFM, Gough PM, Gallese V, Riggio L, Buccino G. How the motor system handles nouns: a behavioral study. Psychol Res. 2013;77(1):64–73.CrossRefPubMed Marino BFM, Gough PM, Gallese V, Riggio L, Buccino G. How the motor system handles nouns: a behavioral study. Psychol Res. 2013;77(1):64–73.CrossRefPubMed
48.
49.
go back to reference Martin A. Circuits in mind: the neural foundations for object concepts. In: Gazzaniga M, editor. The cognitive neurosciences. 4th ed. Cambridge, MA: MIT Press; 2009. p. 1031–45. Martin A. Circuits in mind: the neural foundations for object concepts. In: Gazzaniga M, editor. The cognitive neurosciences. 4th ed. Cambridge, MA: MIT Press; 2009. p. 1031–45.
50.
go back to reference Meyer K, Damasio A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 2009;32(7):376–82.CrossRefPubMed Meyer K, Damasio A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 2009;32(7):376–82.CrossRefPubMed
52.
go back to reference Mohan V, Morasso P. How past experience, imitation and practice can be combined to swiftly learn to use novel “tools”: insights from skill learning experiments with baby humanoids. international conference on biomimetic and biohybrid systems: living machines 2012, July 9–12 2012, Barcelona, Spain. 2012. Mohan V, Morasso P. How past experience, imitation and practice can be combined to swiftly learn to use novel “tools”: insights from skill learning experiments with baby humanoids. international conference on biomimetic and biohybrid systems: living machines 2012, July 9–12 2012, Barcelona, Spain. 2012.
54.
go back to reference Mohan V, Morasso P, Zenzeri J, Metta G, Chakravarthy VS, Sandini G. Teaching a humanoid robot to draw ‘Shapes’. Auton Robots. 2011;31(1):21–53.CrossRef Mohan V, Morasso P, Zenzeri J, Metta G, Chakravarthy VS, Sandini G. Teaching a humanoid robot to draw ‘Shapes’. Auton Robots. 2011;31(1):21–53.CrossRef
55.
go back to reference Mussa Ivaldi FA, Morasso P, Zaccaria R. Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biol Cybern. 1988;60:1–16.PubMed Mussa Ivaldi FA, Morasso P, Zaccaria R. Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biol Cybern. 1988;60:1–16.PubMed
57.
go back to reference Patterson K, Nestor PJ, Rogers TT. Where do you known what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87.CrossRefPubMed Patterson K, Nestor PJ, Rogers TT. Where do you known what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87.CrossRefPubMed
58.
go back to reference Pepperberg IM. The Alex studies: cognitive and communicative abilities of grey parrots. Harvard University Press. 2000. ISBN 0-674-00806-5. Pepperberg IM. The Alex studies: cognitive and communicative abilities of grey parrots. Harvard University Press. 2000. ISBN 0-674-00806-5.
59.
go back to reference Pulvermüller F, Fadiga L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci. 2010;11(5):351–60.CrossRefPubMed Pulvermüller F, Fadiga L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci. 2010;11(5):351–60.CrossRefPubMed
60.
go back to reference Ramachandran VS. The tell-tale brain: a neuroscientist’s quest for what makes us human. New York: W. W. Norton & Company; 2011. Ramachandran VS. The tell-tale brain: a neuroscientist’s quest for what makes us human. New York: W. W. Norton & Company; 2011.
61.
go back to reference Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010;11:264–74.CrossRefPubMed Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci. 2010;11:264–74.CrossRefPubMed
62.
go back to reference Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111:246–52.CrossRefPubMed Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996;111:246–52.CrossRefPubMed
63.
go back to reference Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying action understanding and imitation. Nat Rev Neurosci. 2001;2:661–70.CrossRefPubMed Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying action understanding and imitation. Nat Rev Neurosci. 2001;2:661–70.CrossRefPubMed
64.
go back to reference Rother C, Kolmogorov V, Blake A. GrabCut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (SIGGRAPH). Los Angeles, CA: ACM Press; 2004. p. 309–14. Rother C, Kolmogorov V, Blake A. GrabCut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (SIGGRAPH). Los Angeles, CA: ACM Press; 2004. p. 309–14.
65.
go back to reference Shadmehr R, Mussa-Ivaldi FA, Bizzi E. Postural force fields of the human arm and their role in generating multijoint movements. J Neurosci. 1993;13:45–82.PubMed Shadmehr R, Mussa-Ivaldi FA, Bizzi E. Postural force fields of the human arm and their role in generating multijoint movements. J Neurosci. 1993;13:45–82.PubMed
66.
go back to reference Shapiro R. Direct linear transformation method for three-dimensional cinematography. Res Quart. 1978;49:197–205. Shapiro R. Direct linear transformation method for three-dimensional cinematography. Res Quart. 1978;49:197–205.
67.
go back to reference Sporns O. Networks of the brain. Cambridge, MA: MIT Press; 2010. Sporns O. Networks of the brain. Cambridge, MA: MIT Press; 2010.
68.
70.
go back to reference Suddendorf T, Addis DR, Corballis MC. Mental time travel and the shaping of the human mind. Philos Trans R Soc B. 2009;364:1317–24.CrossRef Suddendorf T, Addis DR, Corballis MC. Mental time travel and the shaping of the human mind. Philos Trans R Soc B. 2009;364:1317–24.CrossRef
71.
go back to reference Thompson E. Mind in life biology, phenomenology and the sciences of mind. 1st ed. Cambridge, MA: Harvard University Press; 2007. p. 568. Thompson E. Mind in life biology, phenomenology and the sciences of mind. 1st ed. Cambridge, MA: Harvard University Press; 2007. p. 568.
72.
go back to reference Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G. When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA. 2008;105(6):2209–13.CrossRefPubMed Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G. When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA. 2008;105(6):2209–13.CrossRefPubMed
73.
go back to reference Varela FJ, Maturana HR, Uribe R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems. 1974;5:187–96.CrossRef Varela FJ, Maturana HR, Uribe R. Autopoiesis: the organization of living systems, its characterization and a model. Biosystems. 1974;5:187–96.CrossRef
74.
go back to reference Venon D, von Hofsten C, Fadiga L. A roadmap for cognitive development in humanoid robots. Berlin: Springer; 2010. Venon D, von Hofsten C, Fadiga L. A roadmap for cognitive development in humanoid robots. Berlin: Springer; 2010.
75.
go back to reference Visalberghi E, Fragaszy D. What is challenging about tool use? The capuchin’s perspective. In: Wasserman EA, Zentall TR, editors. Comparative cognition: experimental explorations of animal intelligence. New York: Oxford University Press; 2006. p. 529–52. Visalberghi E, Fragaszy D. What is challenging about tool use? The capuchin’s perspective. In: Wasserman EA, Zentall TR, editors. Comparative cognition: experimental explorations of animal intelligence. New York: Oxford University Press; 2006. p. 529–52.
76.
go back to reference Visalberghi E, Limongelli L. Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S, editors. Reaching into thought. The minds of the great apes. Cambridge: Cambridge University Press; 1996. p. 57–79. Visalberghi E, Limongelli L. Action and understanding: tool use revisited through the mind of capuchin monkeys. In: Russon A, Bard K, Parker S, editors. Reaching into thought. The minds of the great apes. Cambridge: Cambridge University Press; 1996. p. 57–79.
77.
go back to reference Visalberghi E, Tomasello M. Primate causal understanding in the physical and in the social domains. Behav Process. 1997;42:189–203.CrossRef Visalberghi E, Tomasello M. Primate causal understanding in the physical and in the social domains. Behav Process. 1997;42:189–203.CrossRef
78.
go back to reference Vygotsky LS. Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press; 1978. Vygotsky LS. Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press; 1978.
79.
go back to reference Watts JD, Strogatz S. Collective dynamics of small world networks. Nature. 1998;393(6684). Watts JD, Strogatz S. Collective dynamics of small world networks. Nature. 1998;393(6684).
80.
go back to reference Weiner N. Cybernetics: or control and communication in the animal and the machine. Paris: Hermann & Cie, Cambridge, MA: MIT Press. 1948. ISBN 978-0-262-73009-9. Weiner N. Cybernetics: or control and communication in the animal and the machine. Paris: Hermann & Cie, Cambridge, MA: MIT Press. 1948. ISBN 978-0-262-73009-9.
81.
go back to reference Weir AAS, Chappell J, Kacelnik A. Shaping of hooks in New Caledonian crows. Science. 2002;297:981–3.CrossRefPubMed Weir AAS, Chappell J, Kacelnik A. Shaping of hooks in New Caledonian crows. Science. 2002;297:981–3.CrossRefPubMed
83.
go back to reference White JG. Neuronal connectivity in C elegans. Trends Neurosci. 1985;8:277–83.CrossRef White JG. Neuronal connectivity in C elegans. Trends Neurosci. 1985;8:277–83.CrossRef
84.
go back to reference Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM. Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc B Biol Sci. 2009;364:2417–28.CrossRef Whiten A, McGuigan N, Marshall-Pescini S, Hopper LM. Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc B Biol Sci. 2009;364:2417–28.CrossRef
Metadata
Title
Inference Through Embodied Simulation in Cognitive Robots
Authors
Vishwanathan Mohan
Pietro Morasso
Giulio Sandini
Stathis Kasderidis
Publication date
01-09-2013
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2013
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-013-9205-4

Other articles of this Issue 3/2013

Cognitive Computation 3/2013 Go to the issue

Premium Partner