Skip to main content
Top
Published in: Polymer Bulletin 5/2020

26-06-2019 | Original Paper

Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach

Authors: Muhammad Helmi Abdul Kudus, Muhammad Razlan Zakaria, Muhammad Bisyrul Hafi Othman, Hazizan Md. Akil, Fatima Javed

Published in: Polymer Bulletin | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the polymeric cross-link density on the thermal conductivity of an oxidized graphene (OG)-filled epoxy nanocomposite was investigated by two different fabrication methods, namely a conventional OG mixing (OGconventional) and a diamine–colloidized OG (OGcolloidized) method. Epoxy composites with 3 wt% OG were prepared via the diamine–OG fabrication method to produce an epoxy nanocomposite with a higher cross-link density than that of an epoxy composite with also 3 wt% of OG prepared via the conventional fabrication method. The cross-link densities of the epoxy nanocomposites were calculated by means of a solvent swelling test. The epoxy/OGcolloidized nanocomposite showed a higher cross-link density and higher thermal conductivity than the epoxy/OGconventional nanocomposite with the same filler concentration. It was observed that for the epoxy/OGcolloidized nanocomposite, where an amide network was relatively formed between the carboxylic and amine groups, a high cross-link density enhanced the thermal conductivity by means of the transport of phonons. Furthermore, high dispersion of OG gives high dielectric constant to epoxy/OGcolloidized even having the same amount of graphene loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yung K, Zhu B, Yue T, Xie C (2010) Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems. J Appl Polym Sci 116(1):518–527CrossRef Yung K, Zhu B, Yue T, Xie C (2010) Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems. J Appl Polym Sci 116(1):518–527CrossRef
2.
go back to reference Barth M, Kulkarni R, Eberhardt W, Meibner T, Soltani M, Zimmermann A (2016) Heat dissipation for MID applications in lighting technology. In: Molded interconnect devices (MID), 2016 12th international congress: IEEE, pp 1–4 Barth M, Kulkarni R, Eberhardt W, Meibner T, Soltani M, Zimmermann A (2016) Heat dissipation for MID applications in lighting technology. In: Molded interconnect devices (MID), 2016 12th international congress: IEEE, pp 1–4
3.
go back to reference Shtein M, Nadiv R, Buzaglo M, Regev O (2015) Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl Mater Interfaces 7(42):23725–23730CrossRefPubMed Shtein M, Nadiv R, Buzaglo M, Regev O (2015) Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl Mater Interfaces 7(42):23725–23730CrossRefPubMed
4.
go back to reference Yung KC, Liem H, Choy HS (2013) Prerequisite for maximizing thermal conductivity of epoxy laminate using filler. J Mater Sci Mater Electron 24(4):1095–1104CrossRef Yung KC, Liem H, Choy HS (2013) Prerequisite for maximizing thermal conductivity of epoxy laminate using filler. J Mater Sci Mater Electron 24(4):1095–1104CrossRef
5.
go back to reference Cho S, Lee JY (2010) Heat dissipation of printed circuit board by the high thermal conductivity of photo-imageable solder resist. Electron Mater Lett 6(4):167–172CrossRef Cho S, Lee JY (2010) Heat dissipation of printed circuit board by the high thermal conductivity of photo-imageable solder resist. Electron Mater Lett 6(4):167–172CrossRef
6.
go back to reference Saidina DS, Mariatti M, Julie MJ (2014) Properties of calcium copper titanate and barium titanate filled epoxy composites for electronic applications: effect of filler loading and hybrid fillers. J Mater Sci Mater Electron 25(11):4923–4932CrossRef Saidina DS, Mariatti M, Julie MJ (2014) Properties of calcium copper titanate and barium titanate filled epoxy composites for electronic applications: effect of filler loading and hybrid fillers. J Mater Sci Mater Electron 25(11):4923–4932CrossRef
7.
go back to reference Kozako M, Okazaki Y, Hikita M, Tanaka T (2010) Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In: 2010 10th IEEE international conference on solid dielectrics (ICSD), IEEE, pp 1–4 Kozako M, Okazaki Y, Hikita M, Tanaka T (2010) Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity. In: 2010 10th IEEE international conference on solid dielectrics (ICSD), IEEE, pp 1–4
8.
go back to reference Procter P, Solc J (1991) Improved thermal conductivity in microelectronic encapsulants. In: Electronic components and technology conference, 1991 proceedings, 41st, IEEE, pp 835–842 Procter P, Solc J (1991) Improved thermal conductivity in microelectronic encapsulants. In: Electronic components and technology conference, 1991 proceedings, 41st, IEEE, pp 835–842
9.
go back to reference Suriati G, Mariatti M, Azizan A (2011) Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J Mater Sci Mater Electron 22(1):56–63CrossRef Suriati G, Mariatti M, Azizan A (2011) Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J Mater Sci Mater Electron 22(1):56–63CrossRef
10.
go back to reference Wang Y, Zhu L, Zhou J, Jia B, Jiang Y, Wang J et al (2018) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core–shell particles. Polym Bull 1–14 Wang Y, Zhu L, Zhou J, Jia B, Jiang Y, Wang J et al (2018) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core–shell particles. Polym Bull 1–14
11.
go back to reference Zakaria MR, Akil HM, Kudus MHA, Saleh SSM (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos A Appl Sci Manuf 66:109–116CrossRef Zakaria MR, Akil HM, Kudus MHA, Saleh SSM (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos A Appl Sci Manuf 66:109–116CrossRef
12.
go back to reference Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRef
13.
go back to reference McGrath LM, Parnas RS, King SH, Schroeder JL, Fischer DA, Lenhart JL (2008) Investigation of the thermal, mechanical, and fracture properties of alumina–epoxy composites. Polymer 49(4):999–1014CrossRef McGrath LM, Parnas RS, King SH, Schroeder JL, Fischer DA, Lenhart JL (2008) Investigation of the thermal, mechanical, and fracture properties of alumina–epoxy composites. Polymer 49(4):999–1014CrossRef
14.
go back to reference Hsieh CY, Chung SL (2006) High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J Appl Polym Sci 102(5):4734–4740CrossRef Hsieh CY, Chung SL (2006) High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J Appl Polym Sci 102(5):4734–4740CrossRef
15.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefPubMed Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefPubMed
16.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRefPubMed Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRefPubMed
17.
go back to reference Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558CrossRefPubMed Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558CrossRefPubMed
18.
go back to reference Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744CrossRef Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744CrossRef
19.
go back to reference Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P et al (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21(20):2088–2092CrossRef Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P et al (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 21(20):2088–2092CrossRef
20.
go back to reference Shahil KM, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867CrossRefPubMed Shahil KM, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867CrossRefPubMed
21.
go back to reference Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 100(7):073113CrossRef Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 100(7):073113CrossRef
22.
go back to reference Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152(15):1331–1340CrossRef Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152(15):1331–1340CrossRef
23.
go back to reference Zakaria MR, Kudus MHA, Akil HM, Thirmizir MZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos B Eng 119:57–66CrossRef Zakaria MR, Kudus MHA, Akil HM, Thirmizir MZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos B Eng 119:57–66CrossRef
24.
go back to reference Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet–epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569CrossRef Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet–epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569CrossRef
25.
go back to reference Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817CrossRef Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817CrossRef
26.
go back to reference Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system. Influ Conc 44:38–44 Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system. Influ Conc 44:38–44
27.
go back to reference Santos R, Vilaverde C, Cunha E, Paiva M, Covas J (2016) Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter 12(1):77–86CrossRefPubMed Santos R, Vilaverde C, Cunha E, Paiva M, Covas J (2016) Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter 12(1):77–86CrossRefPubMed
28.
go back to reference Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69(15):155406CrossRef Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69(15):155406CrossRef
29.
go back to reference Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef
30.
go back to reference Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRefPubMed Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRefPubMed
31.
go back to reference Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361CrossRefPubMed Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299(5611):1361CrossRefPubMed
32.
go back to reference Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23):8888–8891CrossRefPubMed Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133(23):8888–8891CrossRefPubMed
33.
go back to reference Kwon J, Lee SH, Park KH, Seo DH, Lee J, Kong BS et al (2011) Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 7(7):864–868CrossRefPubMed Kwon J, Lee SH, Park KH, Seo DH, Lee J, Kong BS et al (2011) Simple preparation of high-quality graphene flakes without oxidation using potassium salts. Small 7(7):864–868CrossRefPubMed
34.
go back to reference Park KH, Kim BH, Song SH, Kwon J, Kong BS, Kang K et al (2012) Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett 12(6):2871–2876CrossRefPubMed Park KH, Kim BH, Song SH, Kwon J, Kong BS, Kang K et al (2012) Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett 12(6):2871–2876CrossRefPubMed
35.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRefPubMed Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRefPubMed
36.
go back to reference Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRefPubMed Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS et al (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRefPubMed
37.
go back to reference Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRefPubMed Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRefPubMed
38.
go back to reference Kim G-H, Lee D, Shanker A, Shao L, Kwon MS, Gidley D et al (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14(3):295–300CrossRefPubMed Kim G-H, Lee D, Shanker A, Shao L, Kwon MS, Gidley D et al (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14(3):295–300CrossRefPubMed
39.
go back to reference Martin-Gallego M, Verdejo R, Khayet M, de Zarate JMO, Essalhi M, Lopez-Manchado MA (2011) Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res Lett 6(1):610CrossRefPubMedPubMedCentral Martin-Gallego M, Verdejo R, Khayet M, de Zarate JMO, Essalhi M, Lopez-Manchado MA (2011) Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res Lett 6(1):610CrossRefPubMedPubMedCentral
40.
go back to reference Yu JW, Jung J, Choi Y-M, Choi JH, Yu J, Lee JK et al (2016) Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polym Chem 7(1):36–43CrossRef Yu JW, Jung J, Choi Y-M, Choi JH, Yu J, Lee JK et al (2016) Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polym Chem 7(1):36–43CrossRef
41.
go back to reference Yamamoto O (1971) Thermal conductivity of cross-linked polymers. Polym J 2(4):509–517CrossRef Yamamoto O (1971) Thermal conductivity of cross-linked polymers. Polym J 2(4):509–517CrossRef
42.
go back to reference Kanari K, Ozawa T (1973) Thermal conductivity of epoxy resins cured with aliphatic amines. Polym J 4(4):372–378CrossRef Kanari K, Ozawa T (1973) Thermal conductivity of epoxy resins cured with aliphatic amines. Polym J 4(4):372–378CrossRef
43.
go back to reference Maiti A, Mahan G, Pantelides S (1997) Dynamical simulations of nonequilibrium processes—heat flow and the Kapitza resistance across grain boundaries. Solid State Commun 102(7):517–521CrossRef Maiti A, Mahan G, Pantelides S (1997) Dynamical simulations of nonequilibrium processes—heat flow and the Kapitza resistance across grain boundaries. Solid State Commun 102(7):517–521CrossRef
44.
go back to reference Skye A, Schelling PK (2008) Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation. J Appl Phys 103(11):113524CrossRef Skye A, Schelling PK (2008) Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation. J Appl Phys 103(11):113524CrossRef
45.
go back to reference Hu M, Keblinski P, Schelling PK (2009) Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B 79(10):104305CrossRef Hu M, Keblinski P, Schelling PK (2009) Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations. Phys Rev B 79(10):104305CrossRef
46.
go back to reference Hu L, Zhang L, Hu M, Wang J-S, Li B, Keblinski P (2010) Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations. Phys Rev B 81(23):235427CrossRef Hu L, Zhang L, Hu M, Wang J-S, Li B, Keblinski P (2010) Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations. Phys Rev B 81(23):235427CrossRef
47.
go back to reference Chen J, Zhang G, Li B (2012) Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J Appl Phys 112(6):064319CrossRef Chen J, Zhang G, Li B (2012) Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J Appl Phys 112(6):064319CrossRef
48.
go back to reference Abdul Kudus MH, Zakaria MR, Hafi Othman MB, Md Akil H (2017) Preparation and characterization of colloidized diamine/oxidized-graphene via condensation polymerization of carboxyl groups epoxy/oxidized-graphene nanocomposite. Polymer 124:186–202CrossRef Abdul Kudus MH, Zakaria MR, Hafi Othman MB, Md Akil H (2017) Preparation and characterization of colloidized diamine/oxidized-graphene via condensation polymerization of carboxyl groups epoxy/oxidized-graphene nanocomposite. Polymer 124:186–202CrossRef
49.
go back to reference Dey A, Khan MAS, Athar J, Sikder AK, Chattopadhyay S (2015) Effect of microstructure on HTPB based polyurethane (HTPB-PU). J Mater Sci Eng B 5:45–151 Dey A, Khan MAS, Athar J, Sikder AK, Chattopadhyay S (2015) Effect of microstructure on HTPB based polyurethane (HTPB-PU). J Mater Sci Eng B 5:45–151
50.
go back to reference El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56(1–2):112–126CrossRef El-Tantawy F, Kamada K, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56(1–2):112–126CrossRef
51.
go back to reference Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55(19):4990–5000CrossRef Zhang Y, Wang Y, Yu J, Chen L, Zhu J, Hu Z (2014) Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55(19):4990–5000CrossRef
52.
go back to reference Kim K-S, Jeon I-Y, Ahn S-N, Kwon Y-D, Baek J-B (2011) Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. J Mater Chem 21(20):7337–7342CrossRef Kim K-S, Jeon I-Y, Ahn S-N, Kwon Y-D, Baek J-B (2011) Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. J Mater Chem 21(20):7337–7342CrossRef
53.
go back to reference Liao S-H, Liu P-L, Hsiao M-C, Teng C-C, Wang C-A, Ger M-D et al (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51(12):4573–4581CrossRef Liao S-H, Liu P-L, Hsiao M-C, Teng C-C, Wang C-A, Ger M-D et al (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51(12):4573–4581CrossRef
54.
go back to reference Sarvar F, Poole N, Witting P (1990) PCB glass-fibre laminates: thermal conductivity measurements and their effect on simulation. J Electron Mater 19(12):1345–1350CrossRef Sarvar F, Poole N, Witting P (1990) PCB glass-fibre laminates: thermal conductivity measurements and their effect on simulation. J Electron Mater 19(12):1345–1350CrossRef
55.
go back to reference Azar K, Graebner J (1996) Experimental determination of thermal conductivity of printed wiring boards. Semiconductor thermal measurement and management symposium, 1996 SEMI-THERM XII proceedings, twelfth annual IEEE: IEEE, pp 169–182 Azar K, Graebner J (1996) Experimental determination of thermal conductivity of printed wiring boards. Semiconductor thermal measurement and management symposium, 1996 SEMI-THERM XII proceedings, twelfth annual IEEE: IEEE, pp 169–182
56.
go back to reference Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z (2011) A review of passive thermal management of LED module. J Semicond 32(1):014008CrossRef Huaiyu Y, Koh S, van Zeijl H, Gielen A, Guoqi Z (2011) A review of passive thermal management of LED module. J Semicond 32(1):014008CrossRef
57.
go back to reference Xie F, Qi S, Wu D (2016) A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites. Express Polym Lett 10(6):470CrossRef Xie F, Qi S, Wu D (2016) A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites. Express Polym Lett 10(6):470CrossRef
58.
go back to reference Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV (2012) Effects of chemical bonding on heat transport across interfaces. Nat Mater 11(6):502–506CrossRefPubMed Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV (2012) Effects of chemical bonding on heat transport across interfaces. Nat Mater 11(6):502–506CrossRefPubMed
59.
go back to reference Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRef Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca RatonCrossRef
60.
go back to reference Kadhim M, Abdullah A, Al-Ajaj I, Khalil A (2004) Dielectric properties of epoxy/Al2O3 nanocomposites. Int J Appl Innov Eng Manag 3:468–477 Kadhim M, Abdullah A, Al-Ajaj I, Khalil A (2004) Dielectric properties of epoxy/Al2O3 nanocomposites. Int J Appl Innov Eng Manag 3:468–477
61.
go back to reference Thierauf SC (2010) Understanding signal integrity. Artech House, Norwood Thierauf SC (2010) Understanding signal integrity. Artech House, Norwood
62.
go back to reference Mumby SJ, Yuan J (1989) Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement. J Electron Mater 18(2):287–292CrossRef Mumby SJ, Yuan J (1989) Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement. J Electron Mater 18(2):287–292CrossRef
63.
go back to reference Logsdon SD, Laird DA (2002) Dielectric spectra of bound water in hydrated Ca-smectite. J Non-Cryst Solids 305(1–3):243–246CrossRef Logsdon SD, Laird DA (2002) Dielectric spectra of bound water in hydrated Ca-smectite. J Non-Cryst Solids 305(1–3):243–246CrossRef
64.
go back to reference Othman MBH, Ramli MR, Tyng LY, Ahmad Z, Akil HM (2011) Dielectric constant and refractive index of poly (siloxane–imide) block copolymer. Mater Des 32(6):3173–3182CrossRef Othman MBH, Ramli MR, Tyng LY, Ahmad Z, Akil HM (2011) Dielectric constant and refractive index of poly (siloxane–imide) block copolymer. Mater Des 32(6):3173–3182CrossRef
65.
go back to reference Cheng Z-Y, Zhang Q, Bateman FB (2002) Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly (vinylidene fluoride–trifluoroethylene) copolymers. J Appl Phys 92(11):6749–6755CrossRef Cheng Z-Y, Zhang Q, Bateman FB (2002) Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers: high-energy electron irradiated poly (vinylidene fluoride–trifluoroethylene) copolymers. J Appl Phys 92(11):6749–6755CrossRef
Metadata
Title
Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach
Authors
Muhammad Helmi Abdul Kudus
Muhammad Razlan Zakaria
Muhammad Bisyrul Hafi Othman
Hazizan Md. Akil
Fatima Javed
Publication date
26-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 5/2020
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-02853-5

Other articles of this Issue 5/2020

Polymer Bulletin 5/2020 Go to the issue

Premium Partners