Skip to main content
Top
Published in: Cognitive Computation 1/2013

01-03-2013

Improving Visual Saliency by Adding ‘Face Feature Map’ and ‘Center Bias’

Authors: Sophie Marat, Anis Rahman, Denis Pellerin, Nathalie Guyader, Dominique Houzet

Published in: Cognitive Computation | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Faces play an important role in guiding visual attention, and thus, the inclusion of face detection into a classical visual attention model can improve eye movement predictions. In this study, we proposed a visual saliency model to predict eye movements during free viewing of videos. The model is inspired by the biology of the visual system and breaks down each frame of a video database into three saliency maps, each earmarked for a particular visual feature. (a) A ‘static’ saliency map emphasizes regions that differ from their context in terms of luminance, orientation and spatial frequency. (b) A ‘dynamic’ saliency map emphasizes moving regions with values proportional to motion amplitude. (c) A ‘face’ saliency map emphasizes areas where a face is detected with a value proportional to the confidence of the detection. In parallel, a behavioral experiment was carried out to record eye movements of participants when viewing the videos. These eye movements were compared with the models’ saliency maps to quantify their efficiency. We also examined the influence of center bias on the saliency maps and incorporated it into the model in a suitable way. Finally, we proposed an efficient fusion method of all these saliency maps. Consequently, the fused master saliency map developed in this research is a good predictor of participants’ eye positions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
For clarity, only statistics using NSS criteria are presented since both NSS and TC generally produce the same conclusion. We took the sample mean of 70 frames from each video snippet and then applied the significance tests.
 
Literature
1.
go back to reference Cerf M, Harel J, Einhuser W, Koch C. Predicting human gaze using low-level saliency combined with face detection. In: NIPS’07. 2007. Cerf M, Harel J, Einhuser W, Koch C. Predicting human gaze using low-level saliency combined with face detection. In: NIPS’07. 2007.
2.
go back to reference Ro T, Russell C, Lavie N. Changing faces: a detection advantage in the flicker paradigm. Psychol Sci. 2001;12(1):94.PubMedCrossRef Ro T, Russell C, Lavie N. Changing faces: a detection advantage in the flicker paradigm. Psychol Sci. 2001;12(1):94.PubMedCrossRef
3.
go back to reference Vuilleumier P. Faces call for attention: evidence from patients with visual extinction. Neuropsychologia. 2000;38(5):693.PubMedCrossRef Vuilleumier P. Faces call for attention: evidence from patients with visual extinction. Neuropsychologia. 2000;38(5):693.PubMedCrossRef
4.
go back to reference Theeuwes J, Van Der Stigchel S. Faces capture attention: evidence from inhibition of return. Vis Cogn. 2006;13(6):657.CrossRef Theeuwes J, Van Der Stigchel S. Faces capture attention: evidence from inhibition of return. Vis Cogn. 2006;13(6):657.CrossRef
5.
go back to reference Bindemann M, Burton AM, Langton SRH, Schweinberger SR, Doherty MJ. The control of attention to faces. J Vision. 2007;7(10):15.1.CrossRef Bindemann M, Burton AM, Langton SRH, Schweinberger SR, Doherty MJ. The control of attention to faces. J Vision. 2007;7(10):15.1.CrossRef
6.
go back to reference Müller HJ, Findlay JM. The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychologica. 1988;69(2):129.CrossRef Müller HJ, Findlay JM. The effect of visual attention on peripheral discrimination thresholds in single and multiple element displays. Acta Psychologica. 1988;69(2):129.CrossRef
7.
go back to reference Müller HJ, Rabbitt PM. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Human. 1989;15(2):315.CrossRef Müller HJ, Rabbitt PM. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Human. 1989;15(2):315.CrossRef
8.
go back to reference Shepherd M, Mller HJ. Movement versus focusing of visual attention. Percept Psychophys. 1989;46(2):146.PubMedCrossRef Shepherd M, Mller HJ. Movement versus focusing of visual attention. Percept Psychophys. 1989;46(2):146.PubMedCrossRef
9.
go back to reference Cheal ML, Lyon DR. Central and peripheral precuing of forced-choice discrimination. Q J Exp Psychol. 1991;43(4):859. Cheal ML, Lyon DR. Central and peripheral precuing of forced-choice discrimination. Q J Exp Psychol. 1991;43(4):859.
10.
go back to reference Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc London, Ser B. 2006;361(1476):2109.PubMedCrossRef Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc London, Ser B. 2006;361(1476):2109.PubMedCrossRef
11.
go back to reference Loffler G, Yourganov G, Wilkinson F, Wilson HR. fmri evidence for the neural representation of faces. Nat Neurosci. 2005;8(10):1386.PubMedCrossRef Loffler G, Yourganov G, Wilkinson F, Wilson HR. fmri evidence for the neural representation of faces. Nat Neurosci. 2005;8(10):1386.PubMedCrossRef
13.
go back to reference Birmingham E, Bischof W, Kingstone A. Gaze selection in complex social scenes. Vis Cogn. 2008;16(2):341.CrossRef Birmingham E, Bischof W, Kingstone A. Gaze selection in complex social scenes. Vis Cogn. 2008;16(2):341.CrossRef
14.
go back to reference Driver J, Davis G, Ricciardelli P, Kidd P, Maxwell E, Baron-Cohen S. Gaze perception triggers reflexive visuospatial orienting. Vis Cogn. 1999;6(5):509.CrossRef Driver J, Davis G, Ricciardelli P, Kidd P, Maxwell E, Baron-Cohen S. Gaze perception triggers reflexive visuospatial orienting. Vis Cogn. 1999;6(5):509.CrossRef
15.
go back to reference Langton S, Bruce V. Reflexive visual orienting in response to the social attention of others. Vis Cogn. 1999;6(5):541.CrossRef Langton S, Bruce V. Reflexive visual orienting in response to the social attention of others. Vis Cogn. 1999;6(5):541.CrossRef
16.
go back to reference Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4:219.PubMed Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1985;4:219.PubMed
17.
go back to reference Tsotsos JK, Culhane SM, Wai WYK, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78:507.CrossRef Tsotsos JK, Culhane SM, Wai WYK, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78:507.CrossRef
18.
go back to reference Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE T Pattern Anal. 1998;20:1254.CrossRef Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE T Pattern Anal. 1998;20:1254.CrossRef
19.
go back to reference Ho-Phuoc T, Guyader N, Guérin-Dugué A. A functional and statistical bottom-up saliency model to reveal the relative contributions of low-level visual guiding factors. Cogn Comput. 2010;2(4):344.CrossRef Ho-Phuoc T, Guyader N, Guérin-Dugué A. A functional and statistical bottom-up saliency model to reveal the relative contributions of low-level visual guiding factors. Cogn Comput. 2010;2(4):344.CrossRef
20.
go back to reference Yanulevskaya V, Marsman JB, Cornelissen F, Geusebroek JM. An image statistics-based model for fixation prediction. Cogn Comput. 2011;3(1):94.CrossRef Yanulevskaya V, Marsman JB, Cornelissen F, Geusebroek JM. An image statistics-based model for fixation prediction. Cogn Comput. 2011;3(1):94.CrossRef
21.
go back to reference Le Meur O, Le Callet P, Barba D. Predicting visual fixations on video based on low-level visual features. Vision Res. 2007;47(19):2483.PubMedCrossRef Le Meur O, Le Callet P, Barba D. Predicting visual fixations on video based on low-level visual features. Vision Res. 2007;47(19):2483.PubMedCrossRef
22.
go back to reference Peters RJ, Itti L. Applying computational tools to predict gaze direction in interactive visual environments. ACM T Appl Percept. 2008;5(2):1.CrossRef Peters RJ, Itti L. Applying computational tools to predict gaze direction in interactive visual environments. ACM T Appl Percept. 2008;5(2):1.CrossRef
23.
go back to reference Marat S, Phuoc TH, Granjon L, Guyader N, Pellerin D, Guérin-Dugué A. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int J Comput Vision. 2009;82:231.CrossRef Marat S, Phuoc TH, Granjon L, Guyader N, Pellerin D, Guérin-Dugué A. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int J Comput Vision. 2009;82:231.CrossRef
24.
go back to reference Mital PK, Smith TJ, Hill RL, Henderson JM. Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput. 2010;3(1):5.CrossRef Mital PK, Smith TJ, Hill RL, Henderson JM. Clustering of gaze during dynamic scene viewing is predicted by motion. Cogn Comput. 2010;3(1):5.CrossRef
25.
go back to reference Cerf M, Frady EP, Koch C. Using semantic content as cues for better scanpath prediction. In: Proceedings of the 2008 symposium on eye tracking research & applications. 2008. Cerf M, Frady EP, Koch C. Using semantic content as cues for better scanpath prediction. In: Proceedings of the 2008 symposium on eye tracking research & applications. 2008.
26.
go back to reference Ma YF, Hua XS, Lu L, Zhang HJ. A generic framework of user attention model and its application in video summarization. IEEE T Multimedia. 2005;7:907.CrossRef Ma YF, Hua XS, Lu L, Zhang HJ. A generic framework of user attention model and its application in video summarization. IEEE T Multimedia. 2005;7:907.CrossRef
27.
go back to reference Birmingham E, Bischof WF, Kingstone A. Saliency does not account for fixations to eyes within social scenes. Vision Res. 2009;49(24):2992.PubMedCrossRef Birmingham E, Bischof WF, Kingstone A. Saliency does not account for fixations to eyes within social scenes. Vision Res. 2009;49(24):2992.PubMedCrossRef
28.
go back to reference Chen LQ, Xie X, Fan X, Ma WY, Zhang HJ, Zhou HQ. A visual attention model for adapting images on small displays. Multimedia Syst. 2003;9(4):353.CrossRef Chen LQ, Xie X, Fan X, Ma WY, Zhang HJ, Zhou HQ. A visual attention model for adapting images on small displays. Multimedia Syst. 2003;9(4):353.CrossRef
29.
go back to reference Viola P, Jones MJ. Robust real-time face detection. Int J Comput Vision. 2004;57:137.CrossRef Viola P, Jones MJ. Robust real-time face detection. Int J Comput Vision. 2004;57:137.CrossRef
30.
go back to reference Hubel DH, Wiesel TN. Functional architecture of macaque monkey visual cortex. Society. 1977;198(1130):1. Hubel DH, Wiesel TN. Functional architecture of macaque monkey visual cortex. Society. 1977;198(1130):1.
31.
go back to reference Odobez JM, Bouthemy P. Robust multiresolution estimation of parametric motion models applied to complex scenes. J Visual Commun Image Represent. 1995;6:348.CrossRef Odobez JM, Bouthemy P. Robust multiresolution estimation of parametric motion models applied to complex scenes. J Visual Commun Image Represent. 1995;6:348.CrossRef
32.
go back to reference Bruno E, Pellerin D. Robust motion estimation using spatial gabor-like filters. Signal Process. 2002;82:297.CrossRef Bruno E, Pellerin D. Robust motion estimation using spatial gabor-like filters. Signal Process. 2002;82:297.CrossRef
33.
go back to reference Mechelli A, Price CJ, Friston KJ, Ishai A. Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex. 2004;14(11):1256.PubMedCrossRef Mechelli A, Price CJ, Friston KJ, Ishai A. Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex. 2004;14(11):1256.PubMedCrossRef
34.
go back to reference Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. Predictive codes for forthcoming perception in the frontal cortex. Science. 2006;314(5803):1311.PubMedCrossRef Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. Predictive codes for forthcoming perception in the frontal cortex. Science. 2006;314(5803):1311.PubMedCrossRef
35.
go back to reference Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cognitive Neurosci. 1996;8(6):551.CrossRef Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cognitive Neurosci. 1996;8(6):551.CrossRef
36.
go back to reference Marat S, Guyader N, Pellerin D.Recent advances in signal processing (In-Tech, 2009), chap. Gaze prediction improvement by adding a face feature to a saliency model, pp. 195–210. 12. Marat S, Guyader N, Pellerin D.Recent advances in signal processing (In-Tech, 2009), chap. Gaze prediction improvement by adding a face feature to a saliency model, pp. 195–210. 12.
37.
go back to reference Milner A, Goodale M. The visual brain in action. Oxford psychology series. Oxford University Press, Oxford; 2006.CrossRef Milner A, Goodale M. The visual brain in action. Oxford psychology series. Oxford University Press, Oxford; 2006.CrossRef
38.
go back to reference Tseng P, Carmi R, Cameron IGM, Munoz D, Itti L. Quantifying center bias of observers in free viewing of dynamic natural scenes. J Vision. 2009;9(7):1.CrossRef Tseng P, Carmi R, Cameron IGM, Munoz D, Itti L. Quantifying center bias of observers in free viewing of dynamic natural scenes. J Vision. 2009;9(7):1.CrossRef
39.
go back to reference Dorr M, Martinetz T, Gegenfurtner KR, Barth E. Variability of eye movements when viewing dynamic natural scenes. J Vision. 2010;10(10):1.CrossRef Dorr M, Martinetz T, Gegenfurtner KR, Barth E. Variability of eye movements when viewing dynamic natural scenes. J Vision. 2010;10(10):1.CrossRef
40.
go back to reference Zhao Q, Koch C. Learning a saliency map using fixated locations in natural scenes. J Vision. 2011;11(3):1.CrossRef Zhao Q, Koch C. Learning a saliency map using fixated locations in natural scenes. J Vision. 2011;11(3):1.CrossRef
41.
go back to reference Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vision. 2007;7(14):4.1.CrossRef Tatler BW. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. J Vision. 2007;7(14):4.1.CrossRef
42.
go back to reference Renninger LW, Verghese P, Coughlan J. Where to look next? Eye movements reduce local uncertainty. J Vision. 2007;7:1.CrossRef Renninger LW, Verghese P, Coughlan J. Where to look next? Eye movements reduce local uncertainty. J Vision. 2007;7:1.CrossRef
43.
go back to reference Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In: Computer Vision, 2009 IEEE 12th international conference on. 2009. pp. 2106 –2113. Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In: Computer Vision, 2009 IEEE 12th international conference on. 2009. pp. 2106 –2113.
44.
go back to reference Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW. Sun: a bayesian framework for saliency using natural statistics. J Vision. 2008;8(7):1.CrossRef Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW. Sun: a bayesian framework for saliency using natural statistics. J Vision. 2008;8(7):1.CrossRef
45.
go back to reference Carmi R, Itti L. Visual causes versus correlates of attentional selection in dynamic scenes. Vision Res. 2006;46(26):4333.PubMedCrossRef Carmi R, Itti L. Visual causes versus correlates of attentional selection in dynamic scenes. Vision Res. 2006;46(26):4333.PubMedCrossRef
46.
go back to reference Peters RJ, Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images. Vision Res. 2005;45:2397.PubMedCrossRef Peters RJ, Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images. Vision Res. 2005;45:2397.PubMedCrossRef
47.
go back to reference Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113(4):766.PubMedCrossRef Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev. 2006;113(4):766.PubMedCrossRef
48.
go back to reference Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci. 2004;5:1.CrossRef Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci. 2004;5:1.CrossRef
49.
go back to reference Hershler O, Golan T, Bentin S, Hochstein S. The wide window of face detection. J Vision. 2010;10(10):21.CrossRef Hershler O, Golan T, Bentin S, Hochstein S. The wide window of face detection. J Vision. 2010;10(10):21.CrossRef
Metadata
Title
Improving Visual Saliency by Adding ‘Face Feature Map’ and ‘Center Bias’
Authors
Sophie Marat
Anis Rahman
Denis Pellerin
Nathalie Guyader
Dominique Houzet
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Cognitive Computation / Issue 1/2013
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-012-9146-3

Other articles of this Issue 1/2013

Cognitive Computation 1/2013 Go to the issue

Premium Partner