Skip to main content
Top
Published in: Strength of Materials 1/2019

29-03-2019

Influence of H2S Corrosion on Tensile Properties and Fracture Toughness of X80 Pipeline Steel

Authors: L. Gu, J. Wang, C. B. Luan, X. Y. Li

Published in: Strength of Materials | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tensile and fracture properties of X80 pipeline steel were studied in a mimic petrochemical environment. X80 pipeline steel specimens were firstly exposed to air or H2S corrosive medium. Then their tensile properties and δ-∆a resistance curves were obtained in experiments. The influence of H2S corrosion on the X80 pipeline steel’s crack growth resistance curve, fracture toughness, and plastic work loss was analyzed. The comparison between the test results after two pretreatments indicates that there was no significant difference in the X80 pipeline steel’s ultimate tensile strength before and after H2S corrosion. But fracture elongation, area reduction and fracture toughness varied greatly (a substantial decrease in elongation and reduction of area). The crack growth resistance curve of the specimen in air was obviously higher than the crack growth resistance curve of the corroded one. Under stable crack growth stage, the crack initiation toughness δ 0.2BL of the specimen in air was 0.732 mm, 2.02 times that of the corroded one (0.364 mm). In the case of similar crack growth ∆a, the plastic work required in the crack growing process (UP) of the specimen in air was 2.29 times that of the H2S-corroded specimen (\( {U}_P^{\hbox{'}} \) ). H2S corrosion resulted in a significant reduction of the fracture toughness of X80 pipeline steel. Hence, H2S corrosion should be avoided in the process of natural gas transportation by pipelines, so as to protect the pipeline steel from toughness degradation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. Zheng and S. Gao, “Research and trial production of X80 pipeline steel with high toughness using acicular ferrite,” Engineering, 3, No. 3, 91–94 (2005). L. Zheng and S. Gao, “Research and trial production of X80 pipeline steel with high toughness using acicular ferrite,” Engineering, 3, No. 3, 91–94 (2005).
2.
go back to reference E. Sosa and J. Alvarez-Ramirez, “Time-correlations in the dynamics of hazardous material pipelines incidents,” J. Hazard. Mater., 165, Nos. 1–3, 1204–1209 (2009). E. Sosa and J. Alvarez-Ramirez, “Time-correlations in the dynamics of hazardous material pipelines incidents,” J. Hazard. Mater., 165, Nos. 1–3, 1204–1209 (2009).
3.
go back to reference J. L. Alamilla, M. A. Espinosa-Medina, and E. Sosa, “Modelling steel corrosion damage in soil environment,” Corros. Sci., 51, No. 11, 2628–2638 (2009).CrossRef J. L. Alamilla, M. A. Espinosa-Medina, and E. Sosa, “Modelling steel corrosion damage in soil environment,” Corros. Sci., 51, No. 11, 2628–2638 (2009).CrossRef
4.
go back to reference Y. T. Xi, D. X. Liu, H. P. Cai, et al., “Stress corrosion cracking behavior of domestic X80 pipeline steel in H2S environment,” Corros. Sci. Prot. Technol., 19, No. 2, 103–105 (2007). Y. T. Xi, D. X. Liu, H. P. Cai, et al., “Stress corrosion cracking behavior of domestic X80 pipeline steel in H2S environment,” Corros. Sci. Prot. Technol., 19, No. 2, 103–105 (2007).
5.
go back to reference B. Y. Wang, L. X. Huo, Y. F. Zhang, and D. P. Wang, “H2S stress corrosion test of welded joint for X80 pipeline steel,” Pres. Ves. Technol., 23, No. 7, 15–18 (2006). B. Y. Wang, L. X. Huo, Y. F. Zhang, and D. P. Wang, “H2S stress corrosion test of welded joint for X80 pipeline steel,” Pres. Ves. Technol., 23, No. 7, 15–18 (2006).
6.
go back to reference Y. Chen, J. Y. Fei, B. H. Wan, and L. Wang, “Stress corrosion crack of buried X80 oil pipeline and its protection,” Hot Work. Technol., 40, No. 22, 55–59 (2011). Y. Chen, J. Y. Fei, B. H. Wan, and L. Wang, “Stress corrosion crack of buried X80 oil pipeline and its protection,” Hot Work. Technol., 40, No. 22, 55–59 (2011).
7.
go back to reference GB/T 228.1-2010. Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature, Chinese National Standard (2010). GB/T 228.1-2010. Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature, Chinese National Standard (2010).
8.
go back to reference GB/T 21143-2007. Metallic Materials – Unified Method of Test for Determination of Quasistatic Fracture Toughness, Chinese National Standard (2007). GB/T 21143-2007. Metallic Materials – Unified Method of Test for Determination of Quasistatic Fracture Toughness, Chinese National Standard (2007).
9.
go back to reference NACE TM0177-2005. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H 2 S Environments, NACE International (2005). NACE TM0177-2005. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H 2 S Environments, NACE International (2005).
10.
go back to reference NACE MR0175-2003. Standard Material Requirements – Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments, NACE International (2003). NACE MR0175-2003. Standard Material Requirements – Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments, NACE International (2003).
11.
go back to reference NACE TM0284-2011. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE International (2011). NACE TM0284-2011. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE International (2011).
12.
go back to reference P. Y. Wang, J. Wang, S. Q. Zheng, et al., “Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel,” Int. J. Hydrogen Energ., 40, No. 35, 11925–11930 (2015). P. Y. Wang, J. Wang, S. Q. Zheng, et al., “Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel,” Int. J. Hydrogen Energ., 40, No. 35, 11925–11930 (2015).
13.
go back to reference T. Depover, E. Van den Eeckhout, and K. Verbeken, “Hydrogen induced mechanical degradation in tungsten alloyed steels,” Mater. Charact., 136, 84–93 (2018).CrossRef T. Depover, E. Van den Eeckhout, and K. Verbeken, “Hydrogen induced mechanical degradation in tungsten alloyed steels,” Mater. Charact., 136, 84–93 (2018).CrossRef
14.
go back to reference GB/T 8650-2015. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, Chinese National Standard (2016). GB/T 8650-2015. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, Chinese National Standard (2016).
15.
go back to reference C. Chen, Q. G. Cai, and R. Z. Wang, Engineering Fracture Mechanics [in Chinese], National Defense Industry Press, Beijing (1977). C. Chen, Q. G. Cai, and R. Z. Wang, Engineering Fracture Mechanics [in Chinese], National Defense Industry Press, Beijing (1977).
16.
go back to reference Q. F. Li, Fracture Mechanics and the Engineering Application [in Chinese], Harbin Engineering University Press, Harbin (2007). Q. F. Li, Fracture Mechanics and the Engineering Application [in Chinese], Harbin Engineering University Press, Harbin (2007).
17.
go back to reference W. Y. Chu, L. J. Qiao, J. X. Li, et al., Hydrogen Embrittlement and Stress Corrosion Cracking [in Chinese], Science Press, Beijing (2013). W. Y. Chu, L. J. Qiao, J. X. Li, et al., Hydrogen Embrittlement and Stress Corrosion Cracking [in Chinese], Science Press, Beijing (2013).
18.
go back to reference Q. Hong and Y. X. Chen, “Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel,” Shanghai Met., 34, No. 1, 25–28, 37 (2012). Q. Hong and Y. X. Chen, “Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel,” Shanghai Met., 34, No. 1, 25–28, 37 (2012).
19.
go back to reference J. Wang, X. Y. Li, and Y. L. Zhang, “Low cycle fatigue crack growth rate in H2S environments,” J. Mech. Strength, 31, No. 3, 972–978 (2009). J. Wang, X. Y. Li, and Y. L. Zhang, “Low cycle fatigue crack growth rate in H2S environments,” J. Mech. Strength, 31, No. 3, 972–978 (2009).
20.
go back to reference A. A. de Araújo, F. L. Bastian, and E. M. Castrodeza, “CTOD-R curves of the metal-clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay,” Fatigue Fract. Eng. M., 39, No. 12, 1477–1487 (2016). A. A. de Araújo, F. L. Bastian, and E. M. Castrodeza, “CTOD-R curves of the metal-clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay,” Fatigue Fract. Eng. M., 39, No. 12, 1477–1487 (2016).
21.
go back to reference ASTM E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2001). ASTM E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2001).
22.
go back to reference E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, and D. I. Pantelis, “Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging,” Int. J. Hydrogen Energ., 36, No. 19, 12626–12643 (2011).CrossRef E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, and D. I. Pantelis, “Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging,” Int. J. Hydrogen Energ., 36, No. 19, 12626–12643 (2011).CrossRef
Metadata
Title
Influence of H2S Corrosion on Tensile Properties and Fracture Toughness of X80 Pipeline Steel
Authors
L. Gu
J. Wang
C. B. Luan
X. Y. Li
Publication date
29-03-2019
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2019
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00060-1

Other articles of this Issue 1/2019

Strength of Materials 1/2019 Go to the issue

Premium Partners