Skip to main content
Erschienen in: Strength of Materials 1/2019

29.03.2019

Influence of H2S Corrosion on Tensile Properties and Fracture Toughness of X80 Pipeline Steel

verfasst von: L. Gu, J. Wang, C. B. Luan, X. Y. Li

Erschienen in: Strength of Materials | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tensile and fracture properties of X80 pipeline steel were studied in a mimic petrochemical environment. X80 pipeline steel specimens were firstly exposed to air or H2S corrosive medium. Then their tensile properties and δ-∆a resistance curves were obtained in experiments. The influence of H2S corrosion on the X80 pipeline steel’s crack growth resistance curve, fracture toughness, and plastic work loss was analyzed. The comparison between the test results after two pretreatments indicates that there was no significant difference in the X80 pipeline steel’s ultimate tensile strength before and after H2S corrosion. But fracture elongation, area reduction and fracture toughness varied greatly (a substantial decrease in elongation and reduction of area). The crack growth resistance curve of the specimen in air was obviously higher than the crack growth resistance curve of the corroded one. Under stable crack growth stage, the crack initiation toughness δ 0.2BL of the specimen in air was 0.732 mm, 2.02 times that of the corroded one (0.364 mm). In the case of similar crack growth ∆a, the plastic work required in the crack growing process (UP) of the specimen in air was 2.29 times that of the H2S-corroded specimen (\( {U}_P^{\hbox{'}} \) ). H2S corrosion resulted in a significant reduction of the fracture toughness of X80 pipeline steel. Hence, H2S corrosion should be avoided in the process of natural gas transportation by pipelines, so as to protect the pipeline steel from toughness degradation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Zheng and S. Gao, “Research and trial production of X80 pipeline steel with high toughness using acicular ferrite,” Engineering, 3, No. 3, 91–94 (2005). L. Zheng and S. Gao, “Research and trial production of X80 pipeline steel with high toughness using acicular ferrite,” Engineering, 3, No. 3, 91–94 (2005).
2.
Zurück zum Zitat E. Sosa and J. Alvarez-Ramirez, “Time-correlations in the dynamics of hazardous material pipelines incidents,” J. Hazard. Mater., 165, Nos. 1–3, 1204–1209 (2009). E. Sosa and J. Alvarez-Ramirez, “Time-correlations in the dynamics of hazardous material pipelines incidents,” J. Hazard. Mater., 165, Nos. 1–3, 1204–1209 (2009).
3.
Zurück zum Zitat J. L. Alamilla, M. A. Espinosa-Medina, and E. Sosa, “Modelling steel corrosion damage in soil environment,” Corros. Sci., 51, No. 11, 2628–2638 (2009).CrossRef J. L. Alamilla, M. A. Espinosa-Medina, and E. Sosa, “Modelling steel corrosion damage in soil environment,” Corros. Sci., 51, No. 11, 2628–2638 (2009).CrossRef
4.
Zurück zum Zitat Y. T. Xi, D. X. Liu, H. P. Cai, et al., “Stress corrosion cracking behavior of domestic X80 pipeline steel in H2S environment,” Corros. Sci. Prot. Technol., 19, No. 2, 103–105 (2007). Y. T. Xi, D. X. Liu, H. P. Cai, et al., “Stress corrosion cracking behavior of domestic X80 pipeline steel in H2S environment,” Corros. Sci. Prot. Technol., 19, No. 2, 103–105 (2007).
5.
Zurück zum Zitat B. Y. Wang, L. X. Huo, Y. F. Zhang, and D. P. Wang, “H2S stress corrosion test of welded joint for X80 pipeline steel,” Pres. Ves. Technol., 23, No. 7, 15–18 (2006). B. Y. Wang, L. X. Huo, Y. F. Zhang, and D. P. Wang, “H2S stress corrosion test of welded joint for X80 pipeline steel,” Pres. Ves. Technol., 23, No. 7, 15–18 (2006).
6.
Zurück zum Zitat Y. Chen, J. Y. Fei, B. H. Wan, and L. Wang, “Stress corrosion crack of buried X80 oil pipeline and its protection,” Hot Work. Technol., 40, No. 22, 55–59 (2011). Y. Chen, J. Y. Fei, B. H. Wan, and L. Wang, “Stress corrosion crack of buried X80 oil pipeline and its protection,” Hot Work. Technol., 40, No. 22, 55–59 (2011).
7.
Zurück zum Zitat GB/T 228.1-2010. Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature, Chinese National Standard (2010). GB/T 228.1-2010. Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature, Chinese National Standard (2010).
8.
Zurück zum Zitat GB/T 21143-2007. Metallic Materials – Unified Method of Test for Determination of Quasistatic Fracture Toughness, Chinese National Standard (2007). GB/T 21143-2007. Metallic Materials – Unified Method of Test for Determination of Quasistatic Fracture Toughness, Chinese National Standard (2007).
9.
Zurück zum Zitat NACE TM0177-2005. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H 2 S Environments, NACE International (2005). NACE TM0177-2005. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H 2 S Environments, NACE International (2005).
10.
Zurück zum Zitat NACE MR0175-2003. Standard Material Requirements – Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments, NACE International (2003). NACE MR0175-2003. Standard Material Requirements – Metals for Sulfide Stress Cracking and Stress Corrosion Cracking Resistance in Sour Oilfield Environments, NACE International (2003).
11.
Zurück zum Zitat NACE TM0284-2011. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE International (2011). NACE TM0284-2011. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE International (2011).
12.
Zurück zum Zitat P. Y. Wang, J. Wang, S. Q. Zheng, et al., “Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel,” Int. J. Hydrogen Energ., 40, No. 35, 11925–11930 (2015). P. Y. Wang, J. Wang, S. Q. Zheng, et al., “Effect of H2S/CO2 partial pressure ratio on the tensile properties of X80 pipeline steel,” Int. J. Hydrogen Energ., 40, No. 35, 11925–11930 (2015).
13.
Zurück zum Zitat T. Depover, E. Van den Eeckhout, and K. Verbeken, “Hydrogen induced mechanical degradation in tungsten alloyed steels,” Mater. Charact., 136, 84–93 (2018).CrossRef T. Depover, E. Van den Eeckhout, and K. Verbeken, “Hydrogen induced mechanical degradation in tungsten alloyed steels,” Mater. Charact., 136, 84–93 (2018).CrossRef
14.
Zurück zum Zitat GB/T 8650-2015. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, Chinese National Standard (2016). GB/T 8650-2015. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, Chinese National Standard (2016).
15.
Zurück zum Zitat C. Chen, Q. G. Cai, and R. Z. Wang, Engineering Fracture Mechanics [in Chinese], National Defense Industry Press, Beijing (1977). C. Chen, Q. G. Cai, and R. Z. Wang, Engineering Fracture Mechanics [in Chinese], National Defense Industry Press, Beijing (1977).
16.
Zurück zum Zitat Q. F. Li, Fracture Mechanics and the Engineering Application [in Chinese], Harbin Engineering University Press, Harbin (2007). Q. F. Li, Fracture Mechanics and the Engineering Application [in Chinese], Harbin Engineering University Press, Harbin (2007).
17.
Zurück zum Zitat W. Y. Chu, L. J. Qiao, J. X. Li, et al., Hydrogen Embrittlement and Stress Corrosion Cracking [in Chinese], Science Press, Beijing (2013). W. Y. Chu, L. J. Qiao, J. X. Li, et al., Hydrogen Embrittlement and Stress Corrosion Cracking [in Chinese], Science Press, Beijing (2013).
18.
Zurück zum Zitat Q. Hong and Y. X. Chen, “Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel,” Shanghai Met., 34, No. 1, 25–28, 37 (2012). Q. Hong and Y. X. Chen, “Effects of static and dynamic hydrogen charging on tensile properties of SM490B clean steel,” Shanghai Met., 34, No. 1, 25–28, 37 (2012).
19.
Zurück zum Zitat J. Wang, X. Y. Li, and Y. L. Zhang, “Low cycle fatigue crack growth rate in H2S environments,” J. Mech. Strength, 31, No. 3, 972–978 (2009). J. Wang, X. Y. Li, and Y. L. Zhang, “Low cycle fatigue crack growth rate in H2S environments,” J. Mech. Strength, 31, No. 3, 972–978 (2009).
20.
Zurück zum Zitat A. A. de Araújo, F. L. Bastian, and E. M. Castrodeza, “CTOD-R curves of the metal-clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay,” Fatigue Fract. Eng. M., 39, No. 12, 1477–1487 (2016). A. A. de Araújo, F. L. Bastian, and E. M. Castrodeza, “CTOD-R curves of the metal-clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay,” Fatigue Fract. Eng. M., 39, No. 12, 1477–1487 (2016).
21.
Zurück zum Zitat ASTM E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2001). ASTM E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2001).
22.
Zurück zum Zitat E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, and D. I. Pantelis, “Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging,” Int. J. Hydrogen Energ., 36, No. 19, 12626–12643 (2011).CrossRef E. V. Chatzidouros, V. J. Papazoglou, T. E. Tsiourva, and D. I. Pantelis, “Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging,” Int. J. Hydrogen Energ., 36, No. 19, 12626–12643 (2011).CrossRef
Metadaten
Titel
Influence of H2S Corrosion on Tensile Properties and Fracture Toughness of X80 Pipeline Steel
verfasst von
L. Gu
J. Wang
C. B. Luan
X. Y. Li
Publikationsdatum
29.03.2019
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2019
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-019-00060-1

Weitere Artikel der Ausgabe 1/2019

Strength of Materials 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.