Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2020

20-10-2020

Influence of Heat Treatment on the Microstructure Evolution and Mechanical Properties of Graphene/Ti2AlNb Composites Synthesized via Spark Plasma Sintering

Authors: Wei Wang, Ziru Han, Qingjuan Wang, Baojia Wei, Shewei Xin, Kuaishe Wang

Published in: Journal of Materials Engineering and Performance | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti2AlNb-based composites with different contents of graphene nanoplatelets (GNPs) were prepared by high-energy ball milling and spark plasma sintering (SPS) under vacuum conditions. The effects of heat treatment on microstructures and mechanical behaviors of the composites were also evaluated. The results showed the layer structures of GNPs were retained in the composite and a small number of in situ TiC were formed during SPS. When GNPs contents increases to 0.2 wt.%, compared with pure Ti2AlNb alloy, the ultimate compressive strength (UCS) of the composites after solid solution (960 °C + 3 h) was increased by 13.35% and exceeded 1500 MPa. After further aging treatment (760 °C + 12 h), the UCS of the composites with 0.2 wt.% GNPs was reached to 1700 MPa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Luo, J.J. Xu, Y.Q. Wang, Y.Q. Yang, M.A. Umer, and S.Q. Zhang, Effect of Solution and Aging Treatment on the Microstructure and Tensile Properties of SiCf/C/Mo/Ti2AlNb Composites, Intermetallics, 2018, 95, p 33–39CrossRef X. Luo, J.J. Xu, Y.Q. Wang, Y.Q. Yang, M.A. Umer, and S.Q. Zhang, Effect of Solution and Aging Treatment on the Microstructure and Tensile Properties of SiCf/C/Mo/Ti2AlNb Composites, Intermetallics, 2018, 95, p 33–39CrossRef
2.
go back to reference A.A. Popov, A.G. Illarionov, S.V. Grib et al., Phase and Structural Transformations in the Alloy on the Basis of the Orthorhombic Titanium Aluminide, Phys. Met. Metallogr., 2008, 106(4), p 399–410CrossRef A.A. Popov, A.G. Illarionov, S.V. Grib et al., Phase and Structural Transformations in the Alloy on the Basis of the Orthorhombic Titanium Aluminide, Phys. Met. Metallogr., 2008, 106(4), p 399–410CrossRef
3.
go back to reference J.H. Peng, S.Q. Li, Y. Mao, and X.F. Sun, Phase Transformation and Microstructures in Ti-Al-Nb-Ta System, Mater. Lett., 2002, 53(1–2), p 57–62CrossRef J.H. Peng, S.Q. Li, Y. Mao, and X.F. Sun, Phase Transformation and Microstructures in Ti-Al-Nb-Ta System, Mater. Lett., 2002, 53(1–2), p 57–62CrossRef
4.
go back to reference J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2011, 3(11), p 851–861CrossRef J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2011, 3(11), p 851–861CrossRef
5.
go back to reference Wei Wang, Weidong Zeng, Chen Xue, Xiaobo Liang, and Jianwei Zhang, Microstructural Evolution, Creep, and Tensile Behavior of a Ti-22Al-25Nb (at%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176CrossRef Wei Wang, Weidong Zeng, Chen Xue, Xiaobo Liang, and Jianwei Zhang, Microstructural Evolution, Creep, and Tensile Behavior of a Ti-22Al-25Nb (at%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176CrossRef
6.
go back to reference Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of Interfacial Reaction Products in SCS-6 SiC/Ti2AlNb Composites, Scr. Mater., 2004, 51, p 385–389CrossRef Y.Q. Yang, Y. Zhu, Z.J. Ma, and Y. Chen, Formation of Interfacial Reaction Products in SCS-6 SiC/Ti2AlNb Composites, Scr. Mater., 2004, 51, p 385–389CrossRef
7.
go back to reference Y.R. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Liu, Evaluation of Precipitation Hardening in TiC-Reinforced Ti2AlNb-Based Alloys, Int. J. Miner. Metall. Mater., 2018, 25(4), p 453–458CrossRef Y.R. Zhang, Q. Cai, Y.C. Liu, Z.Q. Ma, C. Li, and H.J. Liu, Evaluation of Precipitation Hardening in TiC-Reinforced Ti2AlNb-Based Alloys, Int. J. Miner. Metall. Mater., 2018, 25(4), p 453–458CrossRef
8.
go back to reference S.J. Yang, S. Emura, M. Hagiwara, and S.W. Nam, The Role of TiB Particulate Reinforcement in Ti2AlNb-based Composite Under High Cycle Fatigue, Scr. Mater., 2003, 49, p 897–902CrossRef S.J. Yang, S. Emura, M. Hagiwara, and S.W. Nam, The Role of TiB Particulate Reinforcement in Ti2AlNb-based Composite Under High Cycle Fatigue, Scr. Mater., 2003, 49, p 897–902CrossRef
9.
go back to reference S.J. Yang, S. Emura, S.W. Nam, M. Hagiwara, H.S. Jeon, and S.B. Yoon, Improvement of Creep Resistance in TiB Particle Reinforced Ti2AlNb Composite Particularly Above 700 °C, Mater. Lett., 2004, 58, p 3187–3191CrossRef S.J. Yang, S. Emura, S.W. Nam, M. Hagiwara, H.S. Jeon, and S.B. Yoon, Improvement of Creep Resistance in TiB Particle Reinforced Ti2AlNb Composite Particularly Above 700 °C, Mater. Lett., 2004, 58, p 3187–3191CrossRef
10.
go back to reference Kyong-Ho Sim, Guofeng Wang, Tae-Jong Kim, and Ju Kyong-Sik, Fabrication of a High Strength and Ductility Ti-22Al-25Nb Alloy from High Energy Ball-Milled Powder by Spark Plasma Sintering, J. Alloy. Compd., 2018, 741, p 1112–1120CrossRef Kyong-Ho Sim, Guofeng Wang, Tae-Jong Kim, and Ju Kyong-Sik, Fabrication of a High Strength and Ductility Ti-22Al-25Nb Alloy from High Energy Ball-Milled Powder by Spark Plasma Sintering, J. Alloy. Compd., 2018, 741, p 1112–1120CrossRef
11.
go back to reference N. Andy, B. Ankita, L. Debrupa, Z. Cheng, and A. Arvind, Graphene Reinforced Metal and Ceramic Matrix Composites: a Review, Int. Mater. Rev, 2017, 62, p 241–302CrossRef N. Andy, B. Ankita, L. Debrupa, Z. Cheng, and A. Arvind, Graphene Reinforced Metal and Ceramic Matrix Composites: a Review, Int. Mater. Rev, 2017, 62, p 241–302CrossRef
12.
go back to reference K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, High-temperature Properties of Extruded Titanium Composites Fabricated from Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compos. Sci. Technol., 2012, 72, p 1291–1297CrossRef K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, High-temperature Properties of Extruded Titanium Composites Fabricated from Carbon Nanotubes Coated Titanium Powder by Spark Plasma Sintering and Hot Extrusion, Compos. Sci. Technol., 2012, 72, p 1291–1297CrossRef
13.
go back to reference X.G. Huang, Z.M. Zhao, and L. Zhang, Fusion Bonding of Solidified TiC-TiB2 Ceramic to Ti-6Al-4V Alloy Achieved by Combustion Synthesis in High-gravity Field, Mater. Sci. Eng. A, 2013, 564, p 400CrossRef X.G. Huang, Z.M. Zhao, and L. Zhang, Fusion Bonding of Solidified TiC-TiB2 Ceramic to Ti-6Al-4V Alloy Achieved by Combustion Synthesis in High-gravity Field, Mater. Sci. Eng. A, 2013, 564, p 400CrossRef
14.
go back to reference A.S. Namini and M. Azadbeh, Microstructural Characterisation and Mechanical Properties of Spark Plasmasintered TiB2-Reinforced Titanium Matrix Composite, Powder Metal, 2017, 60(1), p 22CrossRef A.S. Namini and M. Azadbeh, Microstructural Characterisation and Mechanical Properties of Spark Plasmasintered TiB2-Reinforced Titanium Matrix Composite, Powder Metal, 2017, 60(1), p 22CrossRef
15.
go back to reference S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Powder Metallurgy Titanium Metal Matrix Composites Reinforced with Carbon Nanotubes and Graphite, Compos. Part A, 2013, 48, p 57–66CrossRef S. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, Powder Metallurgy Titanium Metal Matrix Composites Reinforced with Carbon Nanotubes and Graphite, Compos. Part A, 2013, 48, p 57–66CrossRef
16.
go back to reference R. Jiang, X. Zhou, Q. Fang, and Z.P. Liu, Coppere Graphene Bulk Composites with Homogeneous Graphene Dispersion and Enhanced Mechanical Properties, Mater. Sci. Eng. A, 2016, 654, p 124–130CrossRef R. Jiang, X. Zhou, Q. Fang, and Z.P. Liu, Coppere Graphene Bulk Composites with Homogeneous Graphene Dispersion and Enhanced Mechanical Properties, Mater. Sci. Eng. A, 2016, 654, p 124–130CrossRef
17.
go back to reference A. Bishta, M. Srivastava, R. Manoj Kumara, I. Lahirib, and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28CrossRef A. Bishta, M. Srivastava, R. Manoj Kumara, I. Lahirib, and D. Lahiri, Strengthening Mechanism in Graphene Nanoplatelets Reinforced Aluminum Composite Fabricated Through Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 695, p 20–28CrossRef
18.
go back to reference Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, and X.B. Liu, Microscopic Mechanical Properties of Titanium Composites Containing Multi-layer Graphene Nanofifillers, Mater. Des., 2016, 109, p 256–263CrossRef Y. Song, Y. Chen, W.W. Liu, W.L. Li, Y.G. Wang, D. Zhao, and X.B. Liu, Microscopic Mechanical Properties of Titanium Composites Containing Multi-layer Graphene Nanofifillers, Mater. Des., 2016, 109, p 256–263CrossRef
19.
go back to reference X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge, and D.D. Wang, Interface Evolution and Superior Tensile Properties of Multi-layer Graphene Reinforced Pure Ti Matrix Composite, Mater. Des., 2018, 140, p 431–441CrossRef X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge, and D.D. Wang, Interface Evolution and Superior Tensile Properties of Multi-layer Graphene Reinforced Pure Ti Matrix Composite, Mater. Des., 2018, 140, p 431–441CrossRef
20.
go back to reference H. Zhou, Y. Su, N. Liu, F. Kong, X. Wang, X. Zhang, and Y. Chen, Modifification of Microstructure and Properties of Ti-47Al-2Cr-4Nb-0.3W Alloys Fabricated by SPS with Trace Multilayer Graphene Addition, Mater. Charact., 2018, 138, p 1–10CrossRef H. Zhou, Y. Su, N. Liu, F. Kong, X. Wang, X. Zhang, and Y. Chen, Modifification of Microstructure and Properties of Ti-47Al-2Cr-4Nb-0.3W Alloys Fabricated by SPS with Trace Multilayer Graphene Addition, Mater. Charact., 2018, 138, p 1–10CrossRef
21.
go back to reference S.L. Shu, B. Xing, F. Qiu, S.B. Jin, and Q.C. Jiang, Comparative Study of the Compression Properties of TiAl Matrix Composites Refinced with Nano-TiB2 and Nano-Ti5Si3 Particles, Mater. Sci. Eng. A, 2013, 506, p 596–600CrossRef S.L. Shu, B. Xing, F. Qiu, S.B. Jin, and Q.C. Jiang, Comparative Study of the Compression Properties of TiAl Matrix Composites Refinced with Nano-TiB2 and Nano-Ti5Si3 Particles, Mater. Sci. Eng. A, 2013, 506, p 596–600CrossRef
22.
go back to reference Faming Zhang and Tengfei Liu, Nanodiamonds Reinforced Titanium Matrix Nanocomposites with Network Architecture, Compos. B, 2019, 165, p 143–154CrossRef Faming Zhang and Tengfei Liu, Nanodiamonds Reinforced Titanium Matrix Nanocomposites with Network Architecture, Compos. B, 2019, 165, p 143–154CrossRef
23.
go back to reference S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scr. Mater, 2003, 48, p 629CrossRef S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scr. Mater, 2003, 48, p 629CrossRef
24.
go back to reference Abdollah Bahador, Junko Umeda, Esah Hamzah, Farazila Yusof, Xiaochun Li, and Katsuyoshi Kondoh, Synergistic Strengthening Mechanisms of Copper Matrix Composites with TiO2 Nanoparticles, Mater. Sci. Eng. A, 2020, 772, p 138797CrossRef Abdollah Bahador, Junko Umeda, Esah Hamzah, Farazila Yusof, Xiaochun Li, and Katsuyoshi Kondoh, Synergistic Strengthening Mechanisms of Copper Matrix Composites with TiO2 Nanoparticles, Mater. Sci. Eng. A, 2020, 772, p 138797CrossRef
25.
go back to reference Wang Wei, Zeng Weidong, Xue Chen, Liang Xiaobo, and Zhang Jianwei, Designed Bimodal Size Lamellar O Microstructures in Ti2AlNb-based Alloy: Microstructural Evolution Tensile and Creep Properties, Mater. Sci. Eng. A, 2014, 618, p 288–294CrossRef Wang Wei, Zeng Weidong, Xue Chen, Liang Xiaobo, and Zhang Jianwei, Designed Bimodal Size Lamellar O Microstructures in Ti2AlNb-based Alloy: Microstructural Evolution Tensile and Creep Properties, Mater. Sci. Eng. A, 2014, 618, p 288–294CrossRef
26.
go back to reference A. Bahador, E. Hamzah, K. Kondoh, T.A.A. Bakar, F. Yusof, H. Imai, S.N. Saud, and M.K. Ibrahim, Effect of Deformation on the Microstructure, Transformation Temperature and Superelasticity of Ti-23 at% Nb Shape-Memory Alloys, Mater. Des., 2017, 118, p 152–162CrossRef A. Bahador, E. Hamzah, K. Kondoh, T.A.A. Bakar, F. Yusof, H. Imai, S.N. Saud, and M.K. Ibrahim, Effect of Deformation on the Microstructure, Transformation Temperature and Superelasticity of Ti-23 at% Nb Shape-Memory Alloys, Mater. Des., 2017, 118, p 152–162CrossRef
27.
go back to reference Jian Liu, Wu Mingxia, Yi Yang, Gang Yang, Haixue Yan, and Kyle Jiang, Preparation and Mechanical Performance of Graphene Platelet Reinforced Titanium Nanocomposites for High Temperature Applications, J. Alloy. Compd., 2018, 765, p 1111–1118CrossRef Jian Liu, Wu Mingxia, Yi Yang, Gang Yang, Haixue Yan, and Kyle Jiang, Preparation and Mechanical Performance of Graphene Platelet Reinforced Titanium Nanocomposites for High Temperature Applications, J. Alloy. Compd., 2018, 765, p 1111–1118CrossRef
28.
go back to reference X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, and D.H. Yu, Microstructure Evolution and Superior Tensile Properties of Low Content Graphene Nanoplatelets Reinforced Pure Ti Matrix Composites, Mater. Sci. Eng. A, 2017, 687, p 164–174CrossRef X.N. Mu, H.M. Zhang, H.N. Cai, Q.B. Fan, Z.H. Zhang, Y. Wu, Z.J. Fu, and D.H. Yu, Microstructure Evolution and Superior Tensile Properties of Low Content Graphene Nanoplatelets Reinforced Pure Ti Matrix Composites, Mater. Sci. Eng. A, 2017, 687, p 164–174CrossRef
29.
go back to reference Z. Cao, X.D. Wang, J.L. Li, Y. Wu, H.P. Zhang, J.Q. Guo, and S.Q. Wang, Reinforcement with Graphene Nanoflakes in Titanium Matrix Composites, J. Alloy. Compd., 2017, 5(696), p 498–502CrossRef Z. Cao, X.D. Wang, J.L. Li, Y. Wu, H.P. Zhang, J.Q. Guo, and S.Q. Wang, Reinforcement with Graphene Nanoflakes in Titanium Matrix Composites, J. Alloy. Compd., 2017, 5(696), p 498–502CrossRef
30.
go back to reference F. Zhang, S. Liu, P. Zhao, T. Liu, and J. Sun, Titanium/nanodiamond Nanocomposites: Effect of Nanodiamond on Microstructure and Mechanical Properties of Titanium, Mater. Des., 2017, 131, p 144CrossRef F. Zhang, S. Liu, P. Zhao, T. Liu, and J. Sun, Titanium/nanodiamond Nanocomposites: Effect of Nanodiamond on Microstructure and Mechanical Properties of Titanium, Mater. Des., 2017, 131, p 144CrossRef
31.
go back to reference W. Xu and L.P. Davila, Tensile Nanomechanics and the Hall-Petch Effect in Nano-crystalline Aluminium, Mater. Sci. Eng. A Struct., 2018, 710, p 413–418CrossRef W. Xu and L.P. Davila, Tensile Nanomechanics and the Hall-Petch Effect in Nano-crystalline Aluminium, Mater. Sci. Eng. A Struct., 2018, 710, p 413–418CrossRef
32.
go back to reference M.A. Morris, Deformation Mechanisms in Fine-Grained Ti-Al Alloys, Mater. Sci. Eng. A, 1997, 224(1–2), p 12–20CrossRef M.A. Morris, Deformation Mechanisms in Fine-Grained Ti-Al Alloys, Mater. Sci. Eng. A, 1997, 224(1–2), p 12–20CrossRef
33.
go back to reference Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: a Model for Predicting Their Yield Strength, Scr. Mater, 2005, 54, p 1321–1326CrossRef Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: a Model for Predicting Their Yield Strength, Scr. Mater, 2005, 54, p 1321–1326CrossRef
34.
go back to reference S. Weixi, Metallography, Vol 8(2), Metallurgical Industry Press, Beijing, 2014, p 243–246 S. Weixi, Metallography, Vol 8(2), Metallurgical Industry Press, Beijing, 2014, p 243–246
35.
go back to reference J.A. Nairn, On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites, Mech. Mater., 1997, 26(2), p 63–80CrossRef J.A. Nairn, On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites, Mech. Mater., 1997, 26(2), p 63–80CrossRef
36.
go back to reference A.F. Boostani, S. Yazdani, R.T. Mousavian, S. Tahamtan, R.A. Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang, and Z.Y. Jiang, Strengthening Mechanisms of Graphene Sheets in Aluminum Matrix Nanocomposites, Mater. Des., 2015, 88, p 983–989CrossRef A.F. Boostani, S. Yazdani, R.T. Mousavian, S. Tahamtan, R.A. Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang, and Z.Y. Jiang, Strengthening Mechanisms of Graphene Sheets in Aluminum Matrix Nanocomposites, Mater. Des., 2015, 88, p 983–989CrossRef
37.
go back to reference B. Kombaiah and K.L. Murty, Coble Orowan Strengthening and Dislocation Climb Mechanisms in a Nb-Modified Zircaloy Cladding, Metall. Mater. Trans. A, 2015, 46(10), p 4646–4660CrossRef B. Kombaiah and K.L. Murty, Coble Orowan Strengthening and Dislocation Climb Mechanisms in a Nb-Modified Zircaloy Cladding, Metall. Mater. Trans. A, 2015, 46(10), p 4646–4660CrossRef
38.
go back to reference Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483(1), p 148–152CrossRef Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483(1), p 148–152CrossRef
39.
go back to reference L.L. Dong, B. Xiao, L.H. Jin, J.W. Lu, Y. Liu, Y.Q. Fu, Y.Q. Zhao, G.H. Wu, and Y.S. Zhang, Mechanisms of Simultaneously Enhanced Strength and Ductility of Titanium Matrix Composites Reinforced with Nanosheets of Graphene Oxides, Ceram. Int., 2019, 45, p 19370–19379CrossRef L.L. Dong, B. Xiao, L.H. Jin, J.W. Lu, Y. Liu, Y.Q. Fu, Y.Q. Zhao, G.H. Wu, and Y.S. Zhang, Mechanisms of Simultaneously Enhanced Strength and Ductility of Titanium Matrix Composites Reinforced with Nanosheets of Graphene Oxides, Ceram. Int., 2019, 45, p 19370–19379CrossRef
Metadata
Title
Influence of Heat Treatment on the Microstructure Evolution and Mechanical Properties of Graphene/Ti2AlNb Composites Synthesized via Spark Plasma Sintering
Authors
Wei Wang
Ziru Han
Qingjuan Wang
Baojia Wei
Shewei Xin
Kuaishe Wang
Publication date
20-10-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05185-y

Other articles of this Issue 11/2020

Journal of Materials Engineering and Performance 11/2020 Go to the issue

Premium Partners