Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 1/2019

28-09-2018 | Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Influence of hierarchical porous structures on the mechanical properties of cellulose aerogels

Authors: Kathirvel Ganesan, Adam Barowski, Lorenz Ratke, Barbara Milow

Published in: Journal of Sol-Gel Science and Technology | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aerogels of cellulose exhibit remarkable mechanical properties as a function of density. Modifying the pore volume in classical cellulose aerogels using sacrificial template methods provide scaffold like microstructure. In the present study, we have developed aerogels of cellulose scaffolds having almost same density values but differ in microstructure and analysed the influence on the mechanical properties of bulk materials. This study can give an insight into the materials design for advanced engineering materials. Employing four surfactants having difference in hydrophilic-lipophilic balance (HLB), namely polyoxyethylene tert-octylphenyl ether (PT), polyoxyethylene (20) oleyl ether (PO), polyoxyethylene (40) nonylphenyl ether (PN) and polyoxyethylene (100) stearyl ether (PS), the cellulose scaffolds with hierarchical porous structures were developed. The mechanical properties of cellulose scaffolds were compared with classical pure cellulose aerogels. The results indicate that the solid fraction of cellulose nanofibers per unit volume of cell walls of scaffolds plays an important role in determining the elastic properties and strength. As the nanofibrils support the cell walls of scaffolds, Young’s modulus can be improved if the concentration of cellulose nanofibers is high at the cell walls or cell wall thickness is larger. The scaffold materials of this kind could be used as supporting materials with desired properties for filter, catalysis and biomedicine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef
2.
go back to reference Ratke L (2011) Monoliths and fibrous cellulose aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, p 173 Ratke L (2011) Monoliths and fibrous cellulose aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, p 173
3.
go back to reference Budtova T, Navard P (2016) Cellulose in NaOH-water based solvents: a review. Cellulose 23:5–55CrossRef Budtova T, Navard P (2016) Cellulose in NaOH-water based solvents: a review. Cellulose 23:5–55CrossRef
4.
go back to reference Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRef Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154CrossRef
5.
go back to reference Wan C, Lu Y, Jiao Y, Cao J, Sun Q, Li J (2015) Cellulose aerogels from cellulose–NaOH/PEG solution and comparison with different cellulose contents. Mater Sci Technol 31(9):1096–1102CrossRef Wan C, Lu Y, Jiao Y, Cao J, Sun Q, Li J (2015) Cellulose aerogels from cellulose–NaOH/PEG solution and comparison with different cellulose contents. Mater Sci Technol 31(9):1096–1102CrossRef
6.
go back to reference Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088CrossRef Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088CrossRef
7.
go back to reference Schestakow M, Karadagli I, Ratke L (2016) Cellulose aerogels prepared from an aqueous zinc chloride salthydrate melt. Carbohydr Polym 137:642–649CrossRef Schestakow M, Karadagli I, Ratke L (2016) Cellulose aerogels prepared from an aqueous zinc chloride salthydrate melt. Carbohydr Polym 137:642–649CrossRef
8.
go back to reference Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRef
9.
go back to reference Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A: Physicochem Eng Asp 240:63–67CrossRef Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A: Physicochem Eng Asp 240:63–67CrossRef
10.
go back to reference Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23(4):2585–2595CrossRef Buchtová N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23(4):2585–2595CrossRef
11.
go back to reference Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRef
12.
go back to reference Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep 7(1):8018CrossRef Li VC-F, Dunn CK, Zhang Z, Deng Y, Qi HJ (2017) Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep 7(1):8018CrossRef
13.
go back to reference Pircher N, Fischhuber D, Carbajal L, Strau C, Nedelec J-M, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300:911–924CrossRef Pircher N, Fischhuber D, Carbajal L, Strau C, Nedelec J-M, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300:911–924CrossRef
14.
go back to reference Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRef
15.
go back to reference Deng M, Zhou Q, Du A, van Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63(21):1851–1854CrossRef Deng M, Zhou Q, Du A, van Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63(21):1851–1854CrossRef
16.
go back to reference Svagan AJ, Jensen P, Dvinskikh SV, Furó I, Berglund LA (2010) Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J Mater Chem 20:6646–6654CrossRef Svagan AJ, Jensen P, Dvinskikh SV, Furó I, Berglund LA (2010) Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J Mater Chem 20:6646–6654CrossRef
17.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Second edn. Cambridge University Press, United Kingdom Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Second edn. Cambridge University Press, United Kingdom
Metadata
Title
Influence of hierarchical porous structures on the mechanical properties of cellulose aerogels
Authors
Kathirvel Ganesan
Adam Barowski
Lorenz Ratke
Barbara Milow
Publication date
28-09-2018
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 1/2019
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4828-2

Other articles of this Issue 1/2019

Journal of Sol-Gel Science and Technology 1/2019 Go to the issue

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Structuring of di-alkyl-urethanesils

Original Paper: Characterization methods of sol–gel and hybrid materials

Mechanically improved sol-gel derived methacrylate-siloxane hybrid materials with urethane linkage

Brief Communication: Characterization methods of sol-gel and hybrid materials

The impact of deuterium oxide on the properties of resorcinol-formaldehyde gels

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Metal-organic framework thin films from copper hydroxide nano-assemblies

Premium Partners