Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 10/2021

10-08-2021 | Original Research Article

Influence of Joule Effect Heating on Recrystallization Phenomena in Inconel 718

Authors: A. Nicolaÿ, J. M. Franchet, J. Cormier, R. E. Logé, G. Fiorucci, J. Fausty, M. Van Der Meer, N. Bozzolo

Published in: Metallurgical and Materials Transactions A | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, the Joule effect heating influence on recrystallization phenomena in the Inconel 718 nickel-based superalloy is investigated in details. On the one hand, static recrystallization kinetic studies at \(1020\,^\circ \mathrm{C}\) after cold deformation up to \(\varepsilon =0.1\) have been performed on a Gleeble 3800 machine, with Joule effect heating, and compared with conventional heating in a radiative furnace, reproducing exactly the same thermal paths in experiments. On the other hand, dynamic recrystallization kinetics have been compared between specimens deformed in the same conditions but varying the heating principle. Compression tests were thus performed on a MTS 250 (radiant heating) and on a Gleeble 3800 (Joule effect heating) at strain rates in the range \(\dot{\varepsilon }\in \left[{10}^{-3}; 1\right]{ \mathrm{s}}^{-1}\) up to a macroscopic strain \(\varepsilon =0.7\) reproducing exactly the same thermomechanical paths. Compression tests were performed at two different nominal temperatures \(T=1050\,^\circ \mathrm{C}\) and \(980\,^\circ \mathrm{C}\) in order to investigate dynamic recrystallization in either δ-phase supersolvus or subsolvus conditions, respectively. As a general trend, Joule effect heating significantly accelerates recrystallization kinetics, and this holds for both static and dynamic recrystallization. Results also suggest that Joule effect heating significantly impacts other metallurgical phenomena like dislocations recovery mechanisms and δ-phase precipitation. The observed differences could not be totally explained by experimental biases resulting from Joule effect heating like radial temperature gradients or differences in initial microstructures. Interactions between electrons and microstructural features such as crystal defects, generally evoked in the literature, are indeed the most probable origin of Joule effect heating impact on microstructural evolutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference R.E. Schafrik, D.D. Ward, and J.R. Groh: 5th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 2001, pp. 1–11. R.E. Schafrik, D.D. Ward, and J.R. Groh: 5th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 2001, pp. 1–11.
2.
go back to reference D. Texier, A.C. Gómez, S. Pierret, J.M. Franchet, T.M. Pollock, P. Villechaise, and J. Cormier: Metall. Trans. A., 2016, vol. 47, pp. 1096–109. .CrossRef D. Texier, A.C. Gómez, S. Pierret, J.M. Franchet, T.M. Pollock, P. Villechaise, and J. Cormier: Metall. Trans. A., 2016, vol. 47, pp. 1096–109. .CrossRef
3.
go back to reference M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Sci. Eng. A., 2016, vol. 678, pp. 137–52. .CrossRef M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Sci. Eng. A., 2016, vol. 678, pp. 137–52. .CrossRef
4.
go back to reference Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A., 2008, vol. 486, pp. 321–32. .CrossRef Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A., 2008, vol. 486, pp. 321–32. .CrossRef
5.
go back to reference M. Zouari, N. Bozzolo, and R.E. Loge: Mater. Sci. Eng. A., 2016, vol. 655, pp. 408–24. .CrossRef M. Zouari, N. Bozzolo, and R.E. Loge: Mater. Sci. Eng. A., 2016, vol. 655, pp. 408–24. .CrossRef
6.
7.
go back to reference R.P. Guest and S. Tin: 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 373–83. R.P. Guest and S. Tin: 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 2005, pp. 373–83.
8.
go back to reference Y.S. Na, J.T. Yeom, N.K. Park, and J.Y. Lee: J. Mater. Process. Technol., 2003, vol. 141, pp. 337–42. .CrossRef Y.S. Na, J.T. Yeom, N.K. Park, and J.Y. Lee: J. Mater. Process. Technol., 2003, vol. 141, pp. 337–42. .CrossRef
9.
go back to reference D.G. He, Y.C. Lin, M.S. Chen, and L. Li: J. Alloys Compd., 2017, vol. 690, pp. 971–8. .CrossRef D.G. He, Y.C. Lin, M.S. Chen, and L. Li: J. Alloys Compd., 2017, vol. 690, pp. 971–8. .CrossRef
10.
go back to reference Y.C. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, and D.G. He: Appl. Phys. A., 2016, vol. 122, p. 601. .CrossRef Y.C. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, and D.G. He: Appl. Phys. A., 2016, vol. 122, p. 601. .CrossRef
11.
go back to reference N. Nayan, N.P. Gurao, S.N. Murty, A.K. Jha, B. Pant, and K.M. George: Mater. Charact., 2015, vol. 110, pp. 236–41. .CrossRef N. Nayan, N.P. Gurao, S.N. Murty, A.K. Jha, B. Pant, and K.M. George: Mater. Charact., 2015, vol. 110, pp. 236–41. .CrossRef
12.
go back to reference Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A., 2008, vol. 497, pp. 479–86. .CrossRef Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A., 2008, vol. 497, pp. 479–86. .CrossRef
13.
go back to reference Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long: Mater. Des., 2016, vol. 97, pp. 13–24. .CrossRef Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long: Mater. Des., 2016, vol. 97, pp. 13–24. .CrossRef
14.
go back to reference S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Mater. Sci. Eng. A., 2000, vol. 293, pp. 198–207. .CrossRef S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Mater. Sci. Eng. A., 2000, vol. 293, pp. 198–207. .CrossRef
15.
go back to reference Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li: J. Alloys Compd., 2015, vol. 640, pp. 101–13. .CrossRef Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li: J. Alloys Compd., 2015, vol. 640, pp. 101–13. .CrossRef
16.
go back to reference D. Zhao and P.K. Chaudhury: 3rd Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 1994, pp. 303–13. D. Zhao and P.K. Chaudhury: 3rd Int. Symp. Superalloys 718, 625, 706 Var. Deriv., 1994, pp. 303–13.
17.
go back to reference N.K. Park, I.S. Kim, Y.S. Na, and J.T. Yeom: J. Mater. Process. Technol., 2001, vol. 111, pp. 98–102. .CrossRef N.K. Park, I.S. Kim, Y.S. Na, and J.T. Yeom: J. Mater. Process. Technol., 2001, vol. 111, pp. 98–102. .CrossRef
18.
go back to reference L.X. Zhou and T.N. Baker: Mater. Sci. Eng. A., 1994, vol. 177, pp. 1–9. .CrossRef L.X. Zhou and T.N. Baker: Mater. Sci. Eng. A., 1994, vol. 177, pp. 1–9. .CrossRef
19.
go back to reference D. Jia, W. Sun, D. Xu, L. Yu, X. Xin, W. Zhang, and F. Qi: J. Alloys Compd., 2019, vol. 787, pp. 196–205. .CrossRef D. Jia, W. Sun, D. Xu, L. Yu, X. Xin, W. Zhang, and F. Qi: J. Alloys Compd., 2019, vol. 787, pp. 196–205. .CrossRef
20.
go back to reference M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Des., 2016, vol. 94, pp. 28–38. .CrossRef M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo: Mater. Des., 2016, vol. 94, pp. 28–38. .CrossRef
21.
go back to reference C. Gupta, J.S. Jha, B. Jayabalan, R. Gujrati, A. Alankar, and S. Mishra: Metall. Trans. A., 2019, vol. 50, pp. 4714–31. .CrossRef C. Gupta, J.S. Jha, B. Jayabalan, R. Gujrati, A. Alankar, and S. Mishra: Metall. Trans. A., 2019, vol. 50, pp. 4714–31. .CrossRef
22.
go back to reference A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, and N. Bozzolo: Acta Mater., 2019, vol. 174, pp. 406–17. .CrossRef A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, and N. Bozzolo: Acta Mater., 2019, vol. 174, pp. 406–17. .CrossRef
23.
24.
25.
go back to reference A.T. Krawczynska, M. Lewandowska, R. Kuziak, and K.J. Kurzydłowski: Phys. Status Solidi C., 2010, vol. 7, pp. 1380–3. .CrossRef A.T. Krawczynska, M. Lewandowska, R. Kuziak, and K.J. Kurzydłowski: Phys. Status Solidi C., 2010, vol. 7, pp. 1380–3. .CrossRef
26.
go back to reference D. Fabregue, B. Mouawad, and C.R. Hutchinson: Scripta Mater., 2014, vol. 92, pp. 3–6. .CrossRef D. Fabregue, B. Mouawad, and C.R. Hutchinson: Scripta Mater., 2014, vol. 92, pp. 3–6. .CrossRef
27.
go back to reference K. Huang, C. Cayron, and R.E. Logé: Mater. Charact., 2017, vol. 129, pp. 121–6. .CrossRef K. Huang, C. Cayron, and R.E. Logé: Mater. Charact., 2017, vol. 129, pp. 121–6. .CrossRef
28.
go back to reference Q. Xu, G. Tang, and Y. Jiang: Mater. Sci. Eng. A., 2011, vol. 528, pp. 4431–6. .CrossRef Q. Xu, G. Tang, and Y. Jiang: Mater. Sci. Eng. A., 2011, vol. 528, pp. 4431–6. .CrossRef
29.
go back to reference W. Bao, X. Chu, S. Lin, and J. Gao: Mater. Sci. Technol., 2017, vol. 33, pp. 836–45. .CrossRef W. Bao, X. Chu, S. Lin, and J. Gao: Mater. Sci. Technol., 2017, vol. 33, pp. 836–45. .CrossRef
30.
go back to reference E.I. Poliak, S.W. Lee, D.H. Seo, and W.Y. Choo: Met. Mater., 1999, vol. 5, pp. 563–70. .CrossRef E.I. Poliak, S.W. Lee, D.H. Seo, and W.Y. Choo: Met. Mater., 1999, vol. 5, pp. 563–70. .CrossRef
31.
go back to reference S.G.R. Brown, J.D. James, and J.A. Spittle: Model. Simul. Mater. Sci. Eng., 1997, vol. 5, p. 539. .CrossRef S.G.R. Brown, J.D. James, and J.A. Spittle: Model. Simul. Mater. Sci. Eng., 1997, vol. 5, p. 539. .CrossRef
32.
go back to reference S.D. Norris and I. Wilson: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, p. 297. .CrossRef S.D. Norris and I. Wilson: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, p. 297. .CrossRef
33.
go back to reference C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu: Metall. Trans. A., 2010, vol. 41, pp. 2304–17. .CrossRef C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu: Metall. Trans. A., 2010, vol. 41, pp. 2304–17. .CrossRef
34.
go back to reference S.L. Semiatin, D.W. Mahaffey, D.J. Tung, W. Zhang, and O.N. Senkov: Metall. Trans. A., 2017, vol. 48, pp. 1864–79. .CrossRef S.L. Semiatin, D.W. Mahaffey, D.J. Tung, W. Zhang, and O.N. Senkov: Metall. Trans. A., 2017, vol. 48, pp. 1864–79. .CrossRef
35.
go back to reference F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy., 2011, vol. 111, pp. 1720–33. .CrossRef F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy., 2011, vol. 111, pp. 1720–33. .CrossRef
36.
go back to reference A. Seret, C. Moussa, M. Bernacki, R. Signorelli, and N. Bozzolo: J. Appl. Crystallogr., 2019, vol. 52, pp. 548–63. .CrossRef A. Seret, C. Moussa, M. Bernacki, R. Signorelli, and N. Bozzolo: J. Appl. Crystallogr., 2019, vol. 52, pp. 548–63. .CrossRef
37.
go back to reference A. Nicolaÿ, J.M. Franchet, J. Cormier, H. Mansour, M. De Graef, A. Seret, and N. Bozzolo: J. Microsc., 2019, vol. 273, pp. 135–47. .CrossRef A. Nicolaÿ, J.M. Franchet, J. Cormier, H. Mansour, M. De Graef, A. Seret, and N. Bozzolo: J. Microsc., 2019, vol. 273, pp. 135–47. .CrossRef
38.
go back to reference V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze: Mater. Sci. Technol., 2004, vol. 20, pp. 1019–26. .CrossRef V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze: Mater. Sci. Technol., 2004, vol. 20, pp. 1019–26. .CrossRef
39.
go back to reference D.G. He, Y.C. Lin, X.Y. Jiang, L.X. Yin, L.H. Wang, and Q. Wu: Mater. Des., 2018, vol. 156, pp. 262–71. .CrossRef D.G. He, Y.C. Lin, X.Y. Jiang, L.X. Yin, L.H. Wang, and Q. Wu: Mater. Des., 2018, vol. 156, pp. 262–71. .CrossRef
40.
go back to reference Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3218–27. .CrossRef Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3218–27. .CrossRef
41.
go back to reference T.J. Koppenaal and C.R. Simcoe: Trans. Metall. Soc. AIME., 1963, vol. 227, p. 615. . T.J. Koppenaal and C.R. Simcoe: Trans. Metall. Soc. AIME., 1963, vol. 227, p. 615. .
42.
43.
44.
go back to reference Y. Onodera, J.I. Maruyama, and K.I. Hirano: J. Mater. Sci., 1977, vol. 12, pp. 1109–14. .CrossRef Y. Onodera, J.I. Maruyama, and K.I. Hirano: J. Mater. Sci., 1977, vol. 12, pp. 1109–14. .CrossRef
45.
46.
go back to reference W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang: Scripta Mater., 1997, vol. 37, pp. 53–7. .CrossRef W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang: Scripta Mater., 1997, vol. 37, pp. 53–7. .CrossRef
47.
go back to reference W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang: Scripta Mater., 1997, vol. 37, pp. 59–64. .CrossRef W.C. Liu, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, and S.G. Wang: Scripta Mater., 1997, vol. 37, pp. 59–64. .CrossRef
48.
go back to reference W.C. Liu, F.R. Xiao, M. Yao, H. Yuan, Z.L. Chen, Z.Q. Jiang, S.G. Wang, and W.H. Li: J. Mater. Sci. Lett., 1998, vol. 17, pp. 245–7. .CrossRef W.C. Liu, F.R. Xiao, M. Yao, H. Yuan, Z.L. Chen, Z.Q. Jiang, S.G. Wang, and W.H. Li: J. Mater. Sci. Lett., 1998, vol. 17, pp. 245–7. .CrossRef
49.
go back to reference Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li: J. Alloys Compd., 2015, vol. 649, pp. 949–60. .CrossRef Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li: J. Alloys Compd., 2015, vol. 649, pp. 949–60. .CrossRef
50.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207. .CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207. .CrossRef
51.
go back to reference J. Humphreys, G.S. Rohrer, A. Rollett, J. Humphreys, G.S. Rohrer, and A. Rollett: Recrystallization and Related Annealing Phenomena. 3rd ed. Elsevier, Amsterdam, 2017, pp. 469–508.CrossRef J. Humphreys, G.S. Rohrer, A. Rollett, J. Humphreys, G.S. Rohrer, and A. Rollett: Recrystallization and Related Annealing Phenomena. 3rd ed. Elsevier, Amsterdam, 2017, pp. 469–508.CrossRef
52.
go back to reference R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A., 1997, vol. 238, pp. 219–74. .CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A., 1997, vol. 238, pp. 219–74. .CrossRef
53.
54.
go back to reference S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, and O.N. Senkov: Metall. Trans. A., 2017, vol. 48, pp. 5357–67. .CrossRef S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, and O.N. Senkov: Metall. Trans. A., 2017, vol. 48, pp. 5357–67. .CrossRef
Metadata
Title
Influence of Joule Effect Heating on Recrystallization Phenomena in Inconel 718
Authors
A. Nicolaÿ
J. M. Franchet
J. Cormier
R. E. Logé
G. Fiorucci
J. Fausty
M. Van Der Meer
N. Bozzolo
Publication date
10-08-2021
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 10/2021
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06411-5

Other articles of this Issue 10/2021

Metallurgical and Materials Transactions A 10/2021 Go to the issue

Premium Partners