Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Infrared Detectors

Authors : Gurinder Kaur Ahluwalia, Ph.D., Ranjan Patro, Ph.D.

Published in: Applications of Chalcogenides: S, Se, and Te

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tellurium-based compounds such as cadmium telluride (CdTe) and mercury cadmium telluride (HgCdTe) have been used as infrared (IR) detectors for over half a century. These versatile narrow gap semiconducting materials are characterized by a direct energy gap and have the ability to obtain both high and low carrier concentrations, high electron mobility of electrons, and low dielectric constant. Nanophotosensors with cadmium chalcogenide (Te, Se, and S) semiconductor nanocrystals are considered to be best candidates to detect spacecraft cracks without increasing payload or changing the thermal properties of heat-shielding of spacecraft. Hg1−x Cd x Te (MCT) is the most widely used infrared (IR) detector material in military applications, compared to other IR detector materials, primarily because of two key features: it is a direct energy band gap semiconductor and its band gap can be engineered by varying the Cd composition to cover a broad range of wavelengths. A small change of lattice constant with composition makes it possible to grow high-quality layers and heterostructures. These can thus be used for detectors operated at various modes, and can be optimized for operation spanning the wide range of the IR spectrum (short-wave infrared (SWIR): 1–3 μm, middle wavelength IR (MWIR: 3–5 μm; long-wavelength IR: 8–14 μm) to very long-wave infrared (VLWIR): 14–30 μm, and at temperatures ranging from that of liquid helium to room temperature. Other specific advantages include a direct energy gap, ability to obtain both low and high carrier concentrations, high mobility of electrons, and low dielectric constant. However, in spite of the various advantages, the material suffers from technological disadvantages partly due to the presence of a weak Hg–Cd bond, which results in bulk, surface, and interface instabilities. Uniformity and yield are still issues especially in the long-wavelength infrared (LWIR) region. Nevertheless, these are leading candidates for IR photoconductive and photovoltaic detector materials in particular for military and space applications. This chapter reviews the development and applications of these materials and competitive technologies for IR detection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Rogalski, Infrared Detectors, 2nd edn. (CRC Press, Boca Raton, FL, 2011) A. Rogalski, Infrared Detectors, 2nd edn. (CRC Press, Boca Raton, FL, 2011)
2.
go back to reference D.L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, Amsterdam, The Netherlands, 2007), p. 515 D.L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, Amsterdam, The Netherlands, 2007), p. 515
4.
go back to reference W. Herschel, Experiments on the refrangibility of the invisible rays of the sun. Phil. Trans. Royal Soc. Lond. 90, 284–292 (1800)CrossRef W. Herschel, Experiments on the refrangibility of the invisible rays of the sun. Phil. Trans. Royal Soc. Lond. 90, 284–292 (1800)CrossRef
5.
go back to reference E.S. Barr, The infrared pioneers—II. Macedonio Melloni. Infrared Phys. 2, 67–73 (1962)CrossRef E.S. Barr, The infrared pioneers—II. Macedonio Melloni. Infrared Phys. 2, 67–73 (1962)CrossRef
6.
go back to reference T.W. Case, Notes on the change of resistance of certain substrates in light. Phys. Rev. 9, 305–310 (1917)CrossRef T.W. Case, Notes on the change of resistance of certain substrates in light. Phys. Rev. 9, 305–310 (1917)CrossRef
8.
go back to reference A. Rogalski, K. Adamiec, J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (SPIE-The International Society for Optical Engineering, Bellingham, WA, 2000) A. Rogalski, K. Adamiec, J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (SPIE-The International Society for Optical Engineering, Bellingham, WA, 2000)
9.
go back to reference J. Piotrowski, A. Rogalski, High Operating Temperature Infrared Photodetectors (SPIE, Bellingham, WA, 2007)CrossRef J. Piotrowski, A. Rogalski, High Operating Temperature Infrared Photodetectors (SPIE, Bellingham, WA, 2007)CrossRef
10.
go back to reference P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014)CrossRef P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014)CrossRef
11.
go back to reference W.S. Boyle, G.E. Smith, Charge-coupled semiconductor devices. Bell. Syst. Tech. J. 49, 587–593 (1970)CrossRef W.S. Boyle, G.E. Smith, Charge-coupled semiconductor devices. Bell. Syst. Tech. J. 49, 587–593 (1970)CrossRef
12.
go back to reference M. Razeghi, Current status and future trends of infrared detectors. Opto-Electron. Rev. 6, 55–194 (1998) M. Razeghi, Current status and future trends of infrared detectors. Opto-Electron. Rev. 6, 55–194 (1998)
13.
go back to reference P. Capper, C. Maxey, C. Butler, M. Grist, J. Price, Bulk growth of near-IR cadmium mercury telluride (CMT). J. Mater. Sci. Mater. Electron. 15, 721–725 (2004)CrossRef P. Capper, C. Maxey, C. Butler, M. Grist, J. Price, Bulk growth of near-IR cadmium mercury telluride (CMT). J. Mater. Sci. Mater. Electron. 15, 721–725 (2004)CrossRef
14.
go back to reference M.B. Reine, Fundamental properties of mercury cadmium telluride, in Encyclopedia of Modern Optics (Academic, London, 2004) M.B. Reine, Fundamental properties of mercury cadmium telluride, in Encyclopedia of Modern Optics (Academic, London, 2004)
15.
go back to reference M.B. Reine, Encyclopedia of Modern Optics 2005 (Academic, London, 2005), pp. 392–402CrossRef M.B. Reine, Encyclopedia of Modern Optics 2005 (Academic, London, 2005), pp. 392–402CrossRef
17.
go back to reference A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)CrossRef A. Rogalski, Infrared detectors: status and trends. Prog. Quantum Electron. 27, 59–210 (2003)CrossRef
18.
go back to reference G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J. Appl. Phys. 53, 7099–7101 (1982)CrossRef G.L. Hansen, J.L. Schmit, T.N. Casselman, Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J. Appl. Phys. 53, 7099–7101 (1982)CrossRef
20.
go back to reference M.H. Weiler, Magnetooptical properties of Hg1−xCdxTe alloys, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, vol. 16 (Academic, New York, 1981), pp. 119–191 M.H. Weiler, Magnetooptical properties of Hg1−xCdxTe alloys, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, vol. 16 (Academic, New York, 1981), pp. 119–191
21.
go back to reference J.P. Rosbeck, R.E. Star, S.L. Price, K.J. Riley, Background and temperature dependent current–voltage characteristics of Hg1−xCdxTe photodiodes. J. Appl. Phys. 53, 6430–6440 (1982)CrossRef J.P. Rosbeck, R.E. Star, S.L. Price, K.J. Riley, Background and temperature dependent current–voltage characteristics of Hg1−xCdxTe photodiodes. J. Appl. Phys. 53, 6430–6440 (1982)CrossRef
22.
go back to reference W.M. Higgins, G.N. Seiler, R.G. Roy, R.A. Lancaster, Standard relationships in the properties of Hg1−xCdxTe. J. Vac. Sci. Technol. A 7, 271–275 (1989)CrossRef W.M. Higgins, G.N. Seiler, R.G. Roy, R.A. Lancaster, Standard relationships in the properties of Hg1−xCdxTe. J. Vac. Sci. Technol. A 7, 271–275 (1989)CrossRef
23.
go back to reference P.N.J. Dennis, C.T. Elliott, C.L. Jones, A method for routine characterization of the hole concentration in p-type cadmium mercury telluride. Infrared Phys. 22, 167–169 (1982)CrossRef P.N.J. Dennis, C.T. Elliott, C.L. Jones, A method for routine characterization of the hole concentration in p-type cadmium mercury telluride. Infrared Phys. 22, 167–169 (1982)CrossRef
24.
go back to reference W. Lei, J. Antoszewski, L. Faraone, Progress, challenges, and opportunities for HgCdTe materials and detectors. Appl. Phys. Revs. 2(041303) (2015) W. Lei, J. Antoszewski, L. Faraone, Progress, challenges, and opportunities for HgCdTe materials and detectors. Appl. Phys. Revs. 2(041303) (2015)
25.
go back to reference P. Norton, Opto-Electron. Rev. 10, 159 (2002) P. Norton, Opto-Electron. Rev. 10, 159 (2002)
26.
go back to reference W.F.H. Micklethwaite, The crystal growth of mercury cadmium telluride, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1981), pp. 48–119 W.F.H. Micklethwaite, The crystal growth of mercury cadmium telluride, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1981), pp. 48–119
27.
go back to reference J.H. Tregilgas, Developments in recrystallized bulk HgCdTe. Progress in Crystal Growth and Characterization of Materials 28, 57–83 (1994)CrossRef J.H. Tregilgas, Developments in recrystallized bulk HgCdTe. Progress in Crystal Growth and Characterization of Materials 28, 57–83 (1994)CrossRef
28.
go back to reference R. Triboulet, The travelling heater method (THM) for Hg1−xCdxTe and related materials. Prog. Cryst. Growth Charact. Mater. 28, 85–114 (1994)CrossRef R. Triboulet, The travelling heater method (THM) for Hg1−xCdxTe and related materials. Prog. Cryst. Growth Charact. Mater. 28, 85–114 (1994)CrossRef
29.
go back to reference P. Capper, Bulk crystal growth-methods and materials, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer Science, New York, 2006) P. Capper, Bulk crystal growth-methods and materials, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer Science, New York, 2006)
30.
go back to reference P. Capper, Bridgman growth of CdxHg1−xTe: a review. Prog. Cryst. Growth Charact. Mater. 19, 259–293 (1989)CrossRef P. Capper, Bridgman growth of CdxHg1−xTe: a review. Prog. Cryst. Growth Charact. Mater. 19, 259–293 (1989)CrossRef
31.
go back to reference N.K. Dhar, R. Dat, A.K. Sood, Advances in infrared detector array technology, Ch 7 (open access), in Optoelectronics—Advanced Materials and Devices, ed. by S.L. Pyshkin, J.M. Ballato (Croatia, InTech, 2013). d (© 2013 Dhar et al., licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited N.K. Dhar, R. Dat, A.K. Sood, Advances in infrared detector array technology, Ch 7 (open access), in Optoelectronics—Advanced Materials and Devices, ed. by S.L. Pyshkin, J.M. Ballato (Croatia, InTech, 2013). d (© 2013 Dhar et al., licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​3.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
32.
go back to reference L. Colombo, R.R. Chang, C.J. Chang, B.A. Baird, Growth of Hg-based alloys by the travelling heater method. J. Vac. Sci. Technol. A 6, 2795–2799 (1988)CrossRef L. Colombo, R.R. Chang, C.J. Chang, B.A. Baird, Growth of Hg-based alloys by the travelling heater method. J. Vac. Sci. Technol. A 6, 2795–2799 (1988)CrossRef
35.
go back to reference P. Capper, J.J.G. Gosney, U.K. Patent 8115911, 1981 P. Capper, J.J.G. Gosney, U.K. Patent 8115911, 1981
37.
go back to reference P. Capper (ed.), Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley, Chichester, 2005) P. Capper (ed.), Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley, Chichester, 2005)
38.
go back to reference P. Capper, J. Garland (eds.), Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011) P. Capper, J. Garland (eds.), Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011)
39.
go back to reference P. Capper, E. Zharikov, Handbook on Crystal Growth, 2nd edn. (Elsevier, Amsterdam, 2015) P. Capper, E. Zharikov, Handbook on Crystal Growth, 2nd edn. (Elsevier, Amsterdam, 2015)
40.
go back to reference P. Capper et al., Copyright (1988) reproduced with permission from The Minerals, Metals and Materials Society. P. Capper et al., Copyright (1988) reproduced with permission from The Minerals, Metals and Materials Society.
41.
go back to reference P.E. Herning, Experimental determination of the mercury-rich corner of the Hg-Cd-Te phase diagram. J. Electron. Mater. 13, 1–14 (1984)CrossRef P.E. Herning, Experimental determination of the mercury-rich corner of the Hg-Cd-Te phase diagram. J. Electron. Mater. 13, 1–14 (1984)CrossRef
42.
go back to reference T.C. Harman, Liquidus isotherms, solidus lines and LPE growth in the TeRich corner of the Hg-Cd-Te system. J. Electron. Mater. 9, 945–961 (1980)CrossRef T.C. Harman, Liquidus isotherms, solidus lines and LPE growth in the TeRich corner of the Hg-Cd-Te system. J. Electron. Mater. 9, 945–961 (1980)CrossRef
43.
go back to reference M. Lanir, K.J. Riley, Performance of PV HgCdTe Arrays for 1-14-μm Applications. IEEE Trans. Electron. Dev. ED 29, 274–279 (1982)CrossRef M. Lanir, K.J. Riley, Performance of PV HgCdTe Arrays for 1-14-μm Applications. IEEE Trans. Electron. Dev. ED 29, 274–279 (1982)CrossRef
44.
go back to reference C.C. Wang, Mercury cadmium telluride junctions grown by liquid phase epitaxy. J. Vac. Sci. Technol. B 9, 1740–1745 (1991)CrossRef C.C. Wang, Mercury cadmium telluride junctions grown by liquid phase epitaxy. J. Vac. Sci. Technol. B 9, 1740–1745 (1991)CrossRef
45.
go back to reference G.N. Pultz, P.W. Norton, E.E. Krueger, M.B. Reine, Growth and characterization of p-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18 μm applications. J. Vac. Sci. Technol. B 9, 1724–1730 (1991)CrossRef G.N. Pultz, P.W. Norton, E.E. Krueger, M.B. Reine, Growth and characterization of p-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18 μm applications. J. Vac. Sci. Technol. B 9, 1724–1730 (1991)CrossRef
46.
go back to reference T. Tung, M.H. Kalisher, A.P. Stevens, P.E. Herning, Liquid-phase epitaxy of Hg1−xCdxTe from Hg solution: a route to infrared detector structures. Mater. Res. Soc. Symp. Proc. 90, 321–56 (1987)CrossRef T. Tung, M.H. Kalisher, A.P. Stevens, P.E. Herning, Liquid-phase epitaxy of Hg1−xCdxTe from Hg solution: a route to infrared detector structures. Mater. Res. Soc. Symp. Proc. 90, 321–56 (1987)CrossRef
47.
go back to reference T. Tung, L.V. De Armond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens, S.J. Tighe, State of the Art of Hg-melt LPE HgCdTe at Santa Barbara Research Center. Proc. SPIE 1735, 109–31 (1992)CrossRef T. Tung, L.V. De Armond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens, S.J. Tighe, State of the Art of Hg-melt LPE HgCdTe at Santa Barbara Research Center. Proc. SPIE 1735, 109–31 (1992)CrossRef
49.
go back to reference P. Mitra, F.C. Case, M.B. Reine, Progress in MOVPE of HgCdTe for advanced infrared detectors. J. Electron. Mater. 27(6), 510–520 (1998)CrossRef P. Mitra, F.C. Case, M.B. Reine, Progress in MOVPE of HgCdTe for advanced infrared detectors. J. Electron. Mater. 27(6), 510–520 (1998)CrossRef
50.
go back to reference L.G. Hipwood, I.M. Baker, C.L. Jones, C. Maxey, H.W. Lau, J. Fitzmaurice, M. Wilson, P. Knowles, LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging. Proc. SPIE 6940 (2008) L.G. Hipwood, I.M. Baker, C.L. Jones, C. Maxey, H.W. Lau, J. Fitzmaurice, M. Wilson, P. Knowles, LW IRFPAs made from HgCdTe grown by MOVPE for use in multispectral imaging. Proc. SPIE 6940 (2008)
51.
go back to reference O.K. Wu, Status of HgCdTe MBE technology for IRFPA. Proceedings of SPIE, 202179. Optoelectronics - Advanced Materials and Devices, 186, 1993 O.K. Wu, Status of HgCdTe MBE technology for IRFPA. Proceedings of SPIE, 202179. Optoelectronics - Advanced Materials and Devices, 186, 1993
52.
go back to reference J.P. Faurie, Molecular beam epitaxy of HgCdTe: growth and characterization. Prog. Crystal Growth Charact. 29, 85–159 (1994)CrossRef J.P. Faurie, Molecular beam epitaxy of HgCdTe: growth and characterization. Prog. Crystal Growth Charact. 29, 85–159 (1994)CrossRef
53.
go back to reference R. Dat, F. Aqariden, W.M. Duncan, D. Chandra, H.D. Shih, In situ spectroscopic ellipsometry for real time composition control of HgCdTe grown by molecular beam epitaxy. Mater. Res. Soc. Symp. Proc. 484, 613–618 (1997)CrossRef R. Dat, F. Aqariden, W.M. Duncan, D. Chandra, H.D. Shih, In situ spectroscopic ellipsometry for real time composition control of HgCdTe grown by molecular beam epitaxy. Mater. Res. Soc. Symp. Proc. 484, 613–618 (1997)CrossRef
54.
go back to reference S.I.C. Irvine, J. Bajaj, Recent progress with in situ monitoring of MCTGrowth. Proc. SPIE 2274, 24–36 (1994)CrossRef S.I.C. Irvine, J. Bajaj, Recent progress with in situ monitoring of MCTGrowth. Proc. SPIE 2274, 24–36 (1994)CrossRef
55.
go back to reference T.S. Lee, J. Garland, C.H. Grein, M. Sumstine, A. Jandeska, Y. Selamet, S. Sivananthan, Correlation of arsenic incorporation and its electrical activation in MBE HgCdTe. J. Electron. Mater. 29, 869–872 (2000)CrossRef T.S. Lee, J. Garland, C.H. Grein, M. Sumstine, A. Jandeska, Y. Selamet, S. Sivananthan, Correlation of arsenic incorporation and its electrical activation in MBE HgCdTe. J. Electron. Mater. 29, 869–872 (2000)CrossRef
56.
go back to reference W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, R.P. Ruth, Key issue in HgCdTe-based focal plane arrays: an industry perspective. J. Vac. Sci. Technol. B 10, 1359–1369 (1992)CrossRef W.E. Tennant, C.A. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, R.P. Ruth, Key issue in HgCdTe-based focal plane arrays: an industry perspective. J. Vac. Sci. Technol. B 10, 1359–1369 (1992)CrossRef
57.
go back to reference R. Triboulet, A. Tromson-Carli, D. Lorans, T. Nguyen Duy, Substrate issues for the growth of mercury cadmium telluride. J. Electron. Mater. 22, 827–834 (1993)CrossRef R. Triboulet, A. Tromson-Carli, D. Lorans, T. Nguyen Duy, Substrate issues for the growth of mercury cadmium telluride. J. Electron. Mater. 22, 827–834 (1993)CrossRef
58.
go back to reference E.R. Gertner, W.E. Tennant, J.D. Blackwell, J.P. Rode, HgCdTe on sapphire: a new approach to infrared detector arrays. J. Cryst. Growth 72, 462–467 (1985)CrossRef E.R. Gertner, W.E. Tennant, J.D. Blackwell, J.P. Rode, HgCdTe on sapphire: a new approach to infrared detector arrays. J. Cryst. Growth 72, 462–467 (1985)CrossRef
59.
go back to reference D.D. Edwall, J.S. Chen, J. Bajaj, E.R. Gertner, MOCVD HgCdTe/GaAs for IR detectors. Semicond. Sci. Technol. 5, 221–224 (1990)CrossRef D.D. Edwall, J.S. Chen, J. Bajaj, E.R. Gertner, MOCVD HgCdTe/GaAs for IR detectors. Semicond. Sci. Technol. 5, 221–224 (1990)CrossRef
60.
go back to reference N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, J.H. Dinan, Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates. J. Vac. Sci. Technol. B 14(3), 2366–2370 (1996)CrossRef N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, J.H. Dinan, Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates. J. Vac. Sci. Technol. B 14(3), 2366–2370 (1996)CrossRef
61.
go back to reference J.M. Peterson, J.A. Franklin, M. Readdy, S.M. Johnson, E. Smith, W.A. Radford, I. Kasai, High-quality large-area MBE HgCdTe/Si. J. Electron. Mater. 35, 1283–1286 (2006)CrossRef J.M. Peterson, J.A. Franklin, M. Readdy, S.M. Johnson, E. Smith, W.A. Radford, I. Kasai, High-quality large-area MBE HgCdTe/Si. J. Electron. Mater. 35, 1283–1286 (2006)CrossRef
62.
go back to reference J.G.A. Wehner, E.P.G. Smith, G.M. Venzor, K.D. Smith, A.M. Ramirez, B.P. Kolasa, K.R. Olsson, M.F. Vilela, HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption. J. Electron. Mater. 40, 1840–1846 (2011)CrossRef J.G.A. Wehner, E.P.G. Smith, G.M. Venzor, K.D. Smith, A.M. Ramirez, B.P. Kolasa, K.R. Olsson, M.F. Vilela, HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption. J. Electron. Mater. 40, 1840–1846 (2011)CrossRef
63.
go back to reference K.D. Smith, J.G.A. Wehner, R.W. Graham, J.E. Randolph, A.M. Ramirez, G.M. Venzor, K. Olsson, M.F. Vilela, E.P.G. Smith, High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays. Proc. SPIE 8353, 83532R (2012)CrossRef K.D. Smith, J.G.A. Wehner, R.W. Graham, J.E. Randolph, A.M. Ramirez, G.M. Venzor, K. Olsson, M.F. Vilela, E.P.G. Smith, High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays. Proc. SPIE 8353, 83532R (2012)CrossRef
64.
go back to reference N.K. Dhar, R. Dat, Advanced imaging research and development at DARPA. Proc. SPIE 8353, 835302 (2012)CrossRef N.K. Dhar, R. Dat, Advanced imaging research and development at DARPA. Proc. SPIE 8353, 835302 (2012)CrossRef
65.
go back to reference A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAs1xSbx nCBn detectors data and analysis. Proc. SPIE 8353, 835333 (2012)CrossRef A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAs1xSbx nCBn detectors data and analysis. Proc. SPIE 8353, 835333 (2012)CrossRef
66.
go back to reference H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, N. Dhar, Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays. Proc. SPIE 8704, 87041U (2013)CrossRef H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, A. Ionescu, A. D’Souza, E. Robinson, D. Okerlund, N. Dhar, Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays. Proc. SPIE 8704, 87041U (2013)CrossRef
67.
go back to reference A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N.K. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAsSb barrier detector data and analysis. Proc. SPIE 8704, 87041U (2013)CrossRef A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N.K. Dhar, P.S. Wijewarnasuriya, C. Grein, MWIR InAsSb barrier detector data and analysis. Proc. SPIE 8704, 87041U (2013)CrossRef
68.
go back to reference C.A. Keasler, E. Bellotti, A numerical study of broadband absorbers for visible to infrared detectors. Appl. Phys. Lett. 99, 091109 (2011)CrossRef C.A. Keasler, E. Bellotti, A numerical study of broadband absorbers for visible to infrared detectors. Appl. Phys. Lett. 99, 091109 (2011)CrossRef
69.
go back to reference J. Schuster, E. Bellotti, Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays. Appl. Phys. Lett. 101, 261118 (2012)CrossRef J. Schuster, E. Bellotti, Analysis of optical and electrical crosstalk in small pitch photon trapping HgCdTe pixel arrays. Appl. Phys. Lett. 101, 261118 (2012)CrossRef
70.
go back to reference P.R. Norton, Infrared detectors in the next millennium. Proc. SPIE 3698, 652–665 (1999)CrossRef P.R. Norton, Infrared detectors in the next millennium. Proc. SPIE 3698, 652–665 (1999)CrossRef
71.
go back to reference J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004)CrossRef J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004)CrossRef
72.
go back to reference A. Turner et al., Producibility of VIPTM scanning focal plane arrays. Proc. SPIE 2228, 237–248 (1994)CrossRef A. Turner et al., Producibility of VIPTM scanning focal plane arrays. Proc. SPIE 2228, 237–248 (1994)CrossRef
73.
go back to reference I.M. Baker, Photovoltaic IR detectors, in Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, ed. by P. Capper (Chapman and Hall, London, 1997), pp. 450–473CrossRef I.M. Baker, Photovoltaic IR detectors, in Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, ed. by P. Capper (Chapman and Hall, London, 1997), pp. 450–473CrossRef
74.
go back to reference P. Tribolet, J.P. Chatard, P. Costa, A. Manissadjian, Progress in HgCdTe homojunction infrared detectors. J. Cryst. Growth 184/185, 1262–1271 (1998)CrossRef P. Tribolet, J.P. Chatard, P. Costa, A. Manissadjian, Progress in HgCdTe homojunction infrared detectors. J. Cryst. Growth 184/185, 1262–1271 (1998)CrossRef
75.
go back to reference J. Bajaj, State-of-the-art HgCdTe materials and devices for infrared imaging, in Physics of Semiconductor Devices, ed. by V. Kumar, S.K. Agarwal (Narosa Publishing House, New Delhi, 1998), pp. 1297–1309 J. Bajaj, State-of-the-art HgCdTe materials and devices for infrared imaging, in Physics of Semiconductor Devices, ed. by V. Kumar, S.K. Agarwal (Narosa Publishing House, New Delhi, 1998), pp. 1297–1309
76.
go back to reference V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, G. Sidorov Yu, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev, HgCdTe epilayers on GaAs: growth and devices. Opto-Electron. Rev. 11, 99–111 (2003) V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, G. Sidorov Yu, A.O. Suslyakov, M.V. Yakushev, A.L. Aseev, HgCdTe epilayers on GaAs: growth and devices. Opto-Electron. Rev. 11, 99–111 (2003)
77.
go back to reference T.J. DeLyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, G.M. Venzor, MBE growth of HgCdTe on silicon substrates for large-area infrared focal plane arrays: a review of recent progress. J. Electron. Mater. 28, 705–711 (1999)CrossRef T.J. DeLyon, J.E. Jensen, M.D. Gorwitz, C.A. Cockrum, S.M. Johnson, G.M. Venzor, MBE growth of HgCdTe on silicon substrates for large-area infrared focal plane arrays: a review of recent progress. J. Electron. Mater. 28, 705–711 (1999)CrossRef
Metadata
Title
Infrared Detectors
Authors
Gurinder Kaur Ahluwalia, Ph.D.
Ranjan Patro, Ph.D.
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41190-3_11