Skip to main content
Top
Published in: Rare Metals 1/2021

25-11-2020 | Original Article

Insight into crystal growth and upconversion luminescence property of tetragonal Ba3Sc2F12 nanocrystals

Authors: Juan Xie, Guang-Chao Zheng, Yang-Ming Hu, Farhat Nosheen, Zhi-Cheng Zhang, Er-Jun Liang

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sc-based nanomaterials have attracted considerable attention due to their unique optical properties different from those of Ln/Y-based nanomaterials. However, studies on Sc-based nanomaterials are far from comprehensive. Particularly, nanoscale alkaline (Ca, Sr and Ba) scandium fluorides were almost ignored for their stringent synthetic conditions. Herein, we synthesize high-quality tetragonal phase Ba3Sc2F12 nanocrystals with uniform morphology and good dispersibility by carefully tailoring the reaction conditions, such as the molar ratio of reactants, temperature and reaction time. Then, the upconversion (UC) luminescence property of Ba3Sc2F12:Yb/Er (Ho) samples is investigated in detail. The doping concentrations of sensitizer (Yb3+) and activator (Er3+ and Ho3+) are optimized for the strongest UC luminescence, of which the corresponding energy transfer processes are also discussed. Moreover, tetragonal Ba3Sc2F12 nanocrystals can gradually transform into hexagonal Ba4Yb3F17 nanocrystals with the increase in Yb3+ doping content. This work provides a novel type of Sc-based nanomaterials with strong red UC emissions which are promising in high-resolution 3-dimensional color displays, laser, bioimaging and biolabels.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe MV, Barnard ES, Sanii B, Urban JJ, Milliron DJ, Cohen BE, Schuck PJ. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol. 2014;9(4):300. Gargas DJ, Chan EM, Ostrowski AD, Aloni S, Altoe MV, Barnard ES, Sanii B, Urban JJ, Milliron DJ, Cohen BE, Schuck PJ. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol. 2014;9(4):300.
[2]
go back to reference Czerny J, Heil F, Egbers CJ, Haase M. Size-controlled growth of β-NaGdF4 and β-NaGdF4: Yb, Er nanocrystals: the influence of the surface area of NaF on the nucleation of the β-phase. Chem Mater. 2020;32(13):5691. Czerny J, Heil F, Egbers CJ, Haase M. Size-controlled growth of β-NaGdF4 and β-NaGdF4: Yb, Er nanocrystals: the influence of the surface area of NaF on the nucleation of the β-phase. Chem Mater. 2020;32(13):5691.
[3]
go back to reference Wu Y, Xu J, Poh ET, Liang L, Liu H, Yang JKW, Qiu CW, Vallee RAL, Liu X. Upconversion superburst with sub-2 mus lifetime. Nat Nanotechnol. 2019;14(12):1110. Wu Y, Xu J, Poh ET, Liang L, Liu H, Yang JKW, Qiu CW, Vallee RAL, Liu X. Upconversion superburst with sub-2 mus lifetime. Nat Nanotechnol. 2019;14(12):1110.
[4]
go back to reference Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc. 2012;134(2):1323. Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc. 2012;134(2):1323.
[7]
go back to reference Xie J, Gao Z, Zhou E, Cheng X, Wang Y, Xie X, Huang L, Huang W. Insights into the growth mechanism of REF3 (RE = La–Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale. 2017;9(41):15974. Xie J, Gao Z, Zhou E, Cheng X, Wang Y, Xie X, Huang L, Huang W. Insights into the growth mechanism of REF3 (RE = La–Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale. 2017;9(41):15974.
[8]
go back to reference Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev. 2013;42(1):6924. Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev. 2013;42(1):6924.
[9]
go back to reference Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, Yang A, Niu G, Song J, Yang HH, Chen X. Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv Mater. 2017;29(21):1606681. Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, Yang A, Niu G, Song J, Yang HH, Chen X. Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform. Adv Mater. 2017;29(21):1606681.
[10]
go back to reference Lu F, Yang L, Ding Y, Zhu JJ. Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy. Adv Funct Mater. 2016;26(26):4778. Lu F, Yang L, Ding Y, Zhu JJ. Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapy. Adv Funct Mater. 2016;26(26):4778.
[11]
go back to reference Wang Y, Zhou J, Gao J, Zhang K, Gao C, Xie X, Huang L. Physical manipulation of lanthanide-activated photoluminescence. Ann Phys. 2019;531(9):1900026. Wang Y, Zhou J, Gao J, Zhang K, Gao C, Xie X, Huang L. Physical manipulation of lanthanide-activated photoluminescence. Ann Phys. 2019;531(9):1900026.
[12]
go back to reference Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015;44(6):1416. Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015;44(6):1416.
[13]
go back to reference Zhang K, Song S, Huang S, Yang L, Min Q, Wu X, Lu F, Zhu JJ. Lighting up MicroRNA in living cells by the disassembly of lock-like DNA-programmed UCNPs-AuNPs through the target cycling amplification strategy. Small. 2018;14:1802292. Zhang K, Song S, Huang S, Yang L, Min Q, Wu X, Lu F, Zhu JJ. Lighting up MicroRNA in living cells by the disassembly of lock-like DNA-programmed UCNPs-AuNPs through the target cycling amplification strategy. Small. 2018;14:1802292.
[14]
go back to reference Xue W, Di Z, Zhao Y, Zhang A, Li L. DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin Chem Lett. 2019;30(4):899. Xue W, Di Z, Zhao Y, Zhang A, Li L. DNA-mediated coordinative assembly of upconversion hetero-nanostructures for targeted dual-modality imaging of cancer cells. Chin Chem Lett. 2019;30(4):899.
[15]
go back to reference Yu S, Tu D, Lian W, Xu J, Chen X. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci China Mater. 2019;62(8):1071. Yu S, Tu D, Lian W, Xu J, Chen X. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci China Mater. 2019;62(8):1071.
[16]
go back to reference Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015;44(6):1302. Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015;44(6):1302.
[17]
go back to reference Ren N, Liang N, Yu X, Wang A, Xie J, Sun C. Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology. 2020;31(14):145101. Ren N, Liang N, Yu X, Wang A, Xie J, Sun C. Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology. 2020;31(14):145101.
[18]
go back to reference Liang L, Chen N, Jia Y, Ma Q, Wang J, Yuan Q, Tan W. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019;12(6):1279. Liang L, Chen N, Jia Y, Ma Q, Wang J, Yuan Q, Tan W. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging. Nano Res. 2019;12(6):1279.
[19]
go back to reference Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104(1):139. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104(1):139.
[20]
go back to reference Xie X, Li Z, Zhang Y, Guo S, Pendharkar AI, Lu M, Huang L, Huang W, Han G. Emerging approximately 800 nm excited lanthanide-doped upconversion nanoparticles. Small. 2017;13(6):1602843. Xie X, Li Z, Zhang Y, Guo S, Pendharkar AI, Lu M, Huang L, Huang W, Han G. Emerging approximately 800 nm excited lanthanide-doped upconversion nanoparticles. Small. 2017;13(6):1602843.
[21]
go back to reference Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10(11):924. Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10(11):924.
[22]
go back to reference Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115(1):395. Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem Rev. 2015;115(1):395.
[23]
go back to reference Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev. 2015;115(19):10725.
[24]
go back to reference Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. Broadband dye-sensitized upconversion of near-infrared light. Nat Photon. 2012;6(8):560. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. Broadband dye-sensitized upconversion of near-infrared light. Nat Photon. 2012;6(8):560.
[25]
go back to reference Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater. 2013;1(9):644. Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater. 2013;1(9):644.
[26]
go back to reference Feng W, Sun LD, Yan CH. Ag nanowires enhanced upconversion emission of NaYF4: Yb, Er nanocrystals via a direct assembly method. Chem Commun. 2009;29(29):4393. Feng W, Sun LD, Yan CH. Ag nanowires enhanced upconversion emission of NaYF4: Yb, Er nanocrystals via a direct assembly method. Chem Commun. 2009;29(29):4393.
[27]
go back to reference Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10(12):968. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10(12):968.
[28]
go back to reference Dou Q, Zhang Y. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir. 2011;27(21):13236. Dou Q, Zhang Y. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir. 2011;27(21):13236.
[29]
go back to reference Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed. 2010;49(41):7456. Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed. 2010;49(41):7456.
[30]
go back to reference Wang J, Wang F, Wang C, Liu Z, Liu X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed. 2011;50(44):10369. Wang J, Wang F, Wang C, Liu Z, Liu X. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed. 2011;50(44):10369.
[31]
go back to reference Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X. The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc. 2012;134(51):20849. Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X. The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc. 2012;134(51):20849.
[32]
go back to reference Yuan P, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH. Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale. 2012;4(16):5132. Yuan P, Lee YH, Gnanasammandhan MK, Guan Z, Zhang Y, Xu QH. Plasmon enhanced upconversion luminescence of NaYF4: Yb, Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale. 2012;4(16):5132.
[33]
go back to reference Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GW, Shi S, Yan CH. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc. 2015;137(20):6569. Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GW, Shi S, Yan CH. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc. 2015;137(20):6569.
[34]
go back to reference Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44(6):1346. Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44(6):1346.
[35]
go back to reference Ai Y, Tu D, Zheng W, Liu Y, Kong J, Hu P, Chen Z, Huang M, Chen X. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection. Nanoscale. 2013;5(14):6430. Ai Y, Tu D, Zheng W, Liu Y, Kong J, Hu P, Chen Z, Huang M, Chen X. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection. Nanoscale. 2013;5(14):6430.
[36]
go back to reference Hu L, Chen J, Sanson A, Wu H, Rodriguez CG, Olivi L, Ren Y, Fan L, Deng J, Xing X. New Insights into the negative thermal expansion: direct experimental evidence for the “guitar-string” effect in cubic ScF3. J Am Chem Soc. 2016;138(27):8320. Hu L, Chen J, Sanson A, Wu H, Rodriguez CG, Olivi L, Ren Y, Fan L, Deng J, Xing X. New Insights into the negative thermal expansion: direct experimental evidence for the “guitar-string” effect in cubic ScF3. J Am Chem Soc. 2016;138(27):8320.
[37]
go back to reference Hu L, Qin F, Sanson A, Huang LF, Pan Z, Li Q, Sun Q, Wang L, Guo F, Aydemir U, Ren Y, Sun C, Deng J, Aquilanti G, Rondinelli JM, Chen J, Xing X. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J Am Chem Soc. 2018;140(13):4477. Hu L, Qin F, Sanson A, Huang LF, Pan Z, Li Q, Sun Q, Wang L, Guo F, Aydemir U, Ren Y, Sun C, Deng J, Aquilanti G, Rondinelli JM, Chen J, Xing X. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J Am Chem Soc. 2018;140(13):4477.
[38]
go back to reference Xie J, Xie X, Mi C, Gao Z, Pan Y, Fan Q, Su H, Jin D, Huang L, Huang W. Controlled synthesis, evolution mechanisms, and luminescent properties of ScFx: Ln (x = 2.76, 3) nanocrystals. Chem Mater. 2017;29(22):9758. Xie J, Xie X, Mi C, Gao Z, Pan Y, Fan Q, Su H, Jin D, Huang L, Huang W. Controlled synthesis, evolution mechanisms, and luminescent properties of ScFx: Ln (x = 2.76, 3) nanocrystals. Chem Mater. 2017;29(22):9758.
[39]
go back to reference Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok AI, Han Y, Zhang Q, Fan Q, Huang W, Capobianco JA, Huang L. Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J Am Chem Soc. 2012;134(20):8340. Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Tok AI, Han Y, Zhang Q, Fan Q, Huang W, Capobianco JA, Huang L. Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J Am Chem Soc. 2012;134(20):8340.
[40]
go back to reference Ding Y, Teng X, Zhu H, Wang L, Pei W, Zhu JJ, Huang L, Huang W. Orthorhombic KSc2F7: Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale. 2013;5(23):11928. Ding Y, Teng X, Zhu H, Wang L, Pei W, Zhu JJ, Huang L, Huang W. Orthorhombic KSc2F7: Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale. 2013;5(23):11928.
[41]
go back to reference Fu H, Yang G, Gai S, Niu N, He F, Xu J, Yang P. Color-tunable and enhanced luminescence of well-defined sodium scandium fluoride nanocrystals. Dalton Trans. 2013;42(22):7863. Fu H, Yang G, Gai S, Niu N, He F, Xu J, Yang P. Color-tunable and enhanced luminescence of well-defined sodium scandium fluoride nanocrystals. Dalton Trans. 2013;42(22):7863.
[42]
go back to reference He X, Yan B. “One-stone–two-birds” modulation for Na3ScF6-based novel nanocrystals: simultaneous morphology evolution and luminescence tuning. Cryst Growth Des. 2014;14(7):3257. He X, Yan B. “One-stone–two-birds” modulation for Na3ScF6-based novel nanocrystals: simultaneous morphology evolution and luminescence tuning. Cryst Growth Des. 2014;14(7):3257.
[43]
go back to reference Pei WB, Wang L, Wu J, Chen B, Wei W, Lau R, Huang L, Huang W. Controlled synthesis of uniform NaxScF3+x nanopolyhedrons, nanoplates, nanorods, and nanospheres using solvents. Cryst Growth Des. 2015;15(6):2988. Pei WB, Wang L, Wu J, Chen B, Wei W, Lau R, Huang L, Huang W. Controlled synthesis of uniform NaxScF3+x nanopolyhedrons, nanoplates, nanorods, and nanospheres using solvents. Cryst Growth Des. 2015;15(6):2988.
[44]
go back to reference Wang Y, Yang B, Chen K, Zhou E, Zhang Q, Yin L, Xie X, Gu L, Huang L. Interconversion between KSc2F7: Er and K2NaScF6: Yb/Er nanocrystals: the role of chemistry. Dalton Trans. 2018;47(14):4950. Wang Y, Yang B, Chen K, Zhou E, Zhang Q, Yin L, Xie X, Gu L, Huang L. Interconversion between KSc2F7: Er and K2NaScF6: Yb/Er nanocrystals: the role of chemistry. Dalton Trans. 2018;47(14):4950.
[45]
go back to reference Zhao B, Shen D, Yang J, Hu S, Zhou X, Tang J. Lanthanide-doped Sr2ScF7 nanocrystals: controllable hydrothermal synthesis, the growth mechanism and tunable up/down conversion luminescence properties. J Mater Chem C. 2017;5(13):3264. Zhao B, Shen D, Yang J, Hu S, Zhou X, Tang J. Lanthanide-doped Sr2ScF7 nanocrystals: controllable hydrothermal synthesis, the growth mechanism and tunable up/down conversion luminescence properties. J Mater Chem C. 2017;5(13):3264.
[46]
go back to reference Wang W, Li YX, Hu SS, Zhang XM, Tang JF, Yang J. Hydrothermal synthesis of Ba3Sc2F12:Yb3+, Ln3+ (Ln = Er, Ho, Tm) crystals and their up conversion white light emission. RSCAdv. 2017;7(89):56229. Wang W, Li YX, Hu SS, Zhang XM, Tang JF, Yang J. Hydrothermal synthesis of Ba3Sc2F12:Yb3+, Ln3+ (Ln = Er, Ho, Tm) crystals and their up conversion white light emission. RSCAdv. 2017;7(89):56229.
[47]
go back to reference Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128(19):6426.
[48]
go back to reference Peng XG. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater. 2003;15(5):459. Peng XG. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater. 2003;15(5):459.
[49]
go back to reference Liu C, Wang H, Li X, Chen D. Monodisperse, size-tunable and highly efficient β-NaYF4: Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem. 2009;19(21):3546. Liu C, Wang H, Li X, Chen D. Monodisperse, size-tunable and highly efficient β-NaYF4: Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem. 2009;19(21):3546.
[51]
go back to reference Raj AN, Rinkel T, Haase M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) nanocrystals. Chem Mater. 2014;26(19):5689. Raj AN, Rinkel T, Haase M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) nanocrystals. Chem Mater. 2014;26(19):5689.
[52]
go back to reference Rinkel T, Nordmann J, Raj AN, Haase M. Ostwald-ripening and particle size focusing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale. 2014;6(23):14523. Rinkel T, Nordmann J, Raj AN, Haase M. Ostwald-ripening and particle size focusing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale. 2014;6(23):14523.
[53]
go back to reference Wei W, Zhang Y, Chen R, Goggi J, Ren N, Huang L, Bhakoo KK, Sun H, Tan TT. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem Mater. 2014;26(18):5183. Wei W, Zhang Y, Chen R, Goggi J, Ren N, Huang L, Bhakoo KK, Sun H, Tan TT. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem Mater. 2014;26(18):5183.
[54]
go back to reference Chen G, Qiu H, Fan R, Hao S, Tan S, Yang C, Han G. Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem. 2012;22(38):20190. Chen G, Qiu H, Fan R, Hao S, Tan S, Yang C, Han G. Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem. 2012;22(38):20190.
Metadata
Title
Insight into crystal growth and upconversion luminescence property of tetragonal Ba3Sc2F12 nanocrystals
Authors
Juan Xie
Guang-Chao Zheng
Yang-Ming Hu
Farhat Nosheen
Zhi-Cheng Zhang
Er-Jun Liang
Publication date
25-11-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01631-x

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners