Skip to main content
Top
Published in: Rare Metals 1/2021

15-09-2020 | Original Article

Dynamic recrystallization behavior and microstructure evolution of high-performance Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P during hot compression

Authors: Chang-Sheng Wang, Hua-Dong Fu, Jian-Xin Xie

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

By means of isothermal compression at temperatures in the range of 650–900 °C and strain rates in the range of 0.001–1 s−1, the dynamic recrystallization behavior and microstructural evolution of a Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P (wt%) alloy designed by a machine learning method were investigated. A semiempirical constitutive equation, processing maps and an average activation energy were generated. The microstructure under different conditions and the effect of strain rate on the texture of the alloy at 800–900 °C were observed. The results show that the suitable temperature is 800–900 °C; when the strain is less than 0.4, the appropriate strain rate is 0.01–0.5 s−1; and when the strain is greater than 0.4, the appropriate strain rate is below 0.05 s−1. After deformation at 800 °C, the main texture changed from {112}〈111〉 of copper to a uniform distribution with the increase in strain rate, but the sample did not have obvious texture after deformation at 850 and 900 °C. The above results can provide a reference for the selection of process parameters.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Zhao Z, Xiao Z, Li Z, Qiu WT, Jiang HY, Lei Q, Liu ZR, Jiang YB, Zhang SJ. Microstructure and properties of a Cu–Ni–Si–Co–Cr alloy with high strength and high conductivity. Mater Sci Eng A. 2019;759:396.CrossRef Zhao Z, Xiao Z, Li Z, Qiu WT, Jiang HY, Lei Q, Liu ZR, Jiang YB, Zhang SJ. Microstructure and properties of a Cu–Ni–Si–Co–Cr alloy with high strength and high conductivity. Mater Sci Eng A. 2019;759:396.CrossRef
[2]
go back to reference Yi J, Jia YL, Zhao YY, Xiao Z, He KJ, Wang Q, Wang MP, Li Z. Precipitation behavior of Cu–3.0Ni–0.72Si alloy. Acta Mater. 2019;166:261.CrossRef Yi J, Jia YL, Zhao YY, Xiao Z, He KJ, Wang Q, Wang MP, Li Z. Precipitation behavior of Cu–3.0Ni–0.72Si alloy. Acta Mater. 2019;166:261.CrossRef
[3]
go back to reference Xiao XP, Xu H, Chen JS, Wang JF, Lu J, Zhang JB, Peng LJ. Coarsening behavior of (Ni, Co)2Si particles in Cu–Ni–Co–Si alloy during aging treatment. Rare Met. 2019;38(11):1062.CrossRef Xiao XP, Xu H, Chen JS, Wang JF, Lu J, Zhang JB, Peng LJ. Coarsening behavior of (Ni, Co)2Si particles in Cu–Ni–Co–Si alloy during aging treatment. Rare Met. 2019;38(11):1062.CrossRef
[4]
go back to reference Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration. 2018;60:204.CrossRef Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration. 2018;60:204.CrossRef
[5]
go back to reference Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Compd. 2006;417(1–2):116.CrossRef Suzuki S, Shibutani N, Mimura K, Isshiki M, Waseda Y. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Compd. 2006;417(1–2):116.CrossRef
[6]
go back to reference Ghosh G, Miyake J, Fine ME. The systems-based design of high-strength, high-conductivity alloys. JOM. 1997;49(3):56.CrossRef Ghosh G, Miyake J, Fine ME. The systems-based design of high-strength, high-conductivity alloys. JOM. 1997;49(3):56.CrossRef
[7]
go back to reference Lei Q, Li Z, Gao Y, Peng X, Benjamin D. Microstructure and mechanical properties of a high strength Cu–Ni–Si alloy treated by combined aging processes. J Alloys Compd. 2017;695:2413.CrossRef Lei Q, Li Z, Gao Y, Peng X, Benjamin D. Microstructure and mechanical properties of a high strength Cu–Ni–Si alloy treated by combined aging processes. J Alloys Compd. 2017;695:2413.CrossRef
[8]
go back to reference Wang W, Kang HJ, Chen ZN, Chen ZJ, Zou CL, Li RG, Yin GM, Wang TM. Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater Sci Eng A. 2016;673:378.CrossRef Wang W, Kang HJ, Chen ZN, Chen ZJ, Zou CL, Li RG, Yin GM, Wang TM. Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater Sci Eng A. 2016;673:378.CrossRef
[9]
go back to reference Wang CS, Fu HD, Jiang L, Xue DZ, Xie JX. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater. 2019;5(1):87.CrossRef Wang CS, Fu HD, Jiang L, Xue DZ, Xie JX. A property-oriented design strategy for high performance copper alloys via machine learning. npj Comput Mater. 2019;5(1):87.CrossRef
[10]
go back to reference Hua K, Zhang YD, Gan WM, Kou HC, Beausir B, Li JS, Esling C. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy. Int J Plast. 2019;119:200.CrossRef Hua K, Zhang YD, Gan WM, Kou HC, Beausir B, Li JS, Esling C. Hot deformation behavior originated from dislocation activity and β to α phase transformation in a metastable β titanium alloy. Int J Plast. 2019;119:200.CrossRef
[11]
go back to reference Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming. J Mater Process Technol. 2004;152(2):136.CrossRef Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming. J Mater Process Technol. 2004;152(2):136.CrossRef
[12]
go back to reference Han Y, Qiao GJ, Sun JP, Zou DN. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci. 2013;67:93.CrossRef Han Y, Qiao GJ, Sun JP, Zou DN. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci. 2013;67:93.CrossRef
[13]
go back to reference Lin YC, Li QF, Xia YC, Li LT. A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloy. Mater Sci Eng A. 2012;534:654.CrossRef Lin YC, Li QF, Xia YC, Li LT. A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloy. Mater Sci Eng A. 2012;534:654.CrossRef
[14]
go back to reference Ji GL, Qin FL, Zhu LY, Li Q, Li L. Dynamic recrystallization kinetics of Cu–0.36Cr–0.03Zr alloy during hot compression. J Mater Eng Perform. 2017;26(6):2698.CrossRef Ji GL, Qin FL, Zhu LY, Li Q, Li L. Dynamic recrystallization kinetics of Cu–0.36Cr–0.03Zr alloy during hot compression. J Mater Eng Perform. 2017;26(6):2698.CrossRef
[15]
go back to reference Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mech Mater. 2015;85:66.CrossRef Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mech Mater. 2015;85:66.CrossRef
[16]
go back to reference Huang K, Logé R. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548.CrossRef Huang K, Logé R. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548.CrossRef
[17]
go back to reference Kwon O, DeArdo AJ. On the recovery and recrystallization which attend static softening in hot-deformed copper and aluminum. Acta Metall Mater. 1990;38(1):41.CrossRef Kwon O, DeArdo AJ. On the recovery and recrystallization which attend static softening in hot-deformed copper and aluminum. Acta Metall Mater. 1990;38(1):41.CrossRef
[18]
go back to reference Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control. Int Mater Rev. 1998;43(6):243.CrossRef Prasad Y, Seshacharyulu T. Modelling of hot deformation for microstructural control. Int Mater Rev. 1998;43(6):243.CrossRef
[19]
go back to reference Medina SF, Hernandez CA. General expression of the Zener–Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater. 1996;44(1):137.CrossRef Medina SF, Hernandez CA. General expression of the Zener–Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater. 1996;44(1):137.CrossRef
[20]
go back to reference Li YS, Zhang Y, Tao NR, Lu K. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 2009;57(3):761.CrossRef Li YS, Zhang Y, Tao NR, Lu K. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 2009;57(3):761.CrossRef
[21]
go back to reference Wang JY, Mi ZL, Li H, Jiang HT, Wang PL. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map. Chin J Rare Met. 2019;43(2):113. Wang JY, Mi ZL, Li H, Jiang HT, Wang PL. Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map. Chin J Rare Met. 2019;43(2):113.
[22]
go back to reference Chen X, Qi YG, Shi XN, Xie BC, Ning YQ. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus. Chin J Rare Met. 2019;43(12):1260. Chen X, Qi YG, Shi XN, Xie BC, Ning YQ. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus. Chin J Rare Met. 2019;43(12):1260.
[23]
go back to reference Zhang Y, Volinsky AA, Xu QQ, Chai Z, Tian BH, Liu P, Tran HT. Deformation behavior and microstructure evolution of the Cu–2Ni–0.5Si–0.15Ag alloy during hot compression. Metall Mater Trans A. 2015;46(12):5871.CrossRef Zhang Y, Volinsky AA, Xu QQ, Chai Z, Tian BH, Liu P, Tran HT. Deformation behavior and microstructure evolution of the Cu–2Ni–0.5Si–0.15Ag alloy during hot compression. Metall Mater Trans A. 2015;46(12):5871.CrossRef
[24]
go back to reference Zhang L, Li Z, Lei Q, Qiu WT, Luo HT. Hot deformation behavior of Cu–8.0Ni–1.8Si–0.15Mg alloy. Mater Sci Eng A. 2011;528(3):1641.CrossRef Zhang L, Li Z, Lei Q, Qiu WT, Luo HT. Hot deformation behavior of Cu–8.0Ni–1.8Si–0.15Mg alloy. Mater Sci Eng A. 2011;528(3):1641.CrossRef
[25]
go back to reference Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys. Mater Sci Eng A. 1998;243(1):82.CrossRef Prasad Y, Seshacharyulu T. Processing maps for hot working of titanium alloys. Mater Sci Eng A. 1998;243(1):82.CrossRef
[26]
go back to reference Yang XM, Guo HZ, Yao ZK, Yuan SC, Xin SW. Hot deformation behavior and processing parameter optimization of BT25y alloy with an initial equiaxed microstructure using processing map. Rare Met. 2018;37(9):778.CrossRef Yang XM, Guo HZ, Yao ZK, Yuan SC, Xin SW. Hot deformation behavior and processing parameter optimization of BT25y alloy with an initial equiaxed microstructure using processing map. Rare Met. 2018;37(9):778.CrossRef
[27]
go back to reference Ravichandran N, Prasad Y. Dynamic recrystallization during hot deformation of aluminum: a study using processing maps. Metall Trans A. 1991;22(10):2339.CrossRef Ravichandran N, Prasad Y. Dynamic recrystallization during hot deformation of aluminum: a study using processing maps. Metall Trans A. 1991;22(10):2339.CrossRef
[28]
go back to reference Narayana Murty SVS, Nageswara Rao B, Kashyap BP. Instability criteria for hot deformation of materials. Int Mater Rev. 2000;45(1):15.CrossRef Narayana Murty SVS, Nageswara Rao B, Kashyap BP. Instability criteria for hot deformation of materials. Int Mater Rev. 2000;45(1):15.CrossRef
[29]
go back to reference Eskandari M, Mohtadi-Bonab MA, Zarei-Hanzaki A, Fatemi SM. Effect of hot deformation on texture and microstructure in Fe–Mn austenitic steel during compression loading. J Mater Eng Perform. 2018;27(4):1555.CrossRef Eskandari M, Mohtadi-Bonab MA, Zarei-Hanzaki A, Fatemi SM. Effect of hot deformation on texture and microstructure in Fe–Mn austenitic steel during compression loading. J Mater Eng Perform. 2018;27(4):1555.CrossRef
[30]
go back to reference Zolotorevsky NY, Rybin VV, Matvienko AN, Ushanova EA, Philippov SA. Misorientation angle distribution of deformation-induced boundaries provided by their EBSD-based separation from original grain boundaries: case study of copper deformed by compression. Mater Charact. 2019;147:184.CrossRef Zolotorevsky NY, Rybin VV, Matvienko AN, Ushanova EA, Philippov SA. Misorientation angle distribution of deformation-induced boundaries provided by their EBSD-based separation from original grain boundaries: case study of copper deformed by compression. Mater Charact. 2019;147:184.CrossRef
[31]
go back to reference Bolingbroke RK, Furu T, Juul Jensen D, Vernon-Parry K. Annealing behaviour of dilute aluminium alloys following hot deformation. Mater Sci Technol. 1996;12(11):897.CrossRef Bolingbroke RK, Furu T, Juul Jensen D, Vernon-Parry K. Annealing behaviour of dilute aluminium alloys following hot deformation. Mater Sci Technol. 1996;12(11):897.CrossRef
[32]
go back to reference Sarma GB, Radhakrishnan B. Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum. Mater Sci Eng A. 2004;385(1):91.CrossRef Sarma GB, Radhakrishnan B. Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum. Mater Sci Eng A. 2004;385(1):91.CrossRef
Metadata
Title
Dynamic recrystallization behavior and microstructure evolution of high-performance Cu–3.28Ni–0.6Si–0.22Zn–0.11Cr–0.04P during hot compression
Authors
Chang-Sheng Wang
Hua-Dong Fu
Jian-Xin Xie
Publication date
15-09-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01578-z

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners