Skip to main content
Top
Published in: Rare Metals 1/2021

03-09-2019

Behaviour of micro- and   nano-alumina-reinforced Mg–3Zn–0.7Zr–1Cu alloy composites processed at different sintering temperatures

Authors: Eacherath Suneesh, Murugesan Sivapragash

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to develop a magnesium-based hybrid composite via a powder metallurgy (PM) technique by simultaneously reinforcing the matrix (Mg–3Zn–0.7Zr–1Cu) alloy with micro-alumina (3.0 wt%) and nano-alumina (0.5 wt% and 1.0 wt%) particulates. The extensive processing involved two different sintering temperatures (400 and 450 °C) followed by hot extrusion and a heat treatment process. The study aimed to add to our understanding of the effects of sintering temperature and alumina content on the physical characteristics of Mg-based composites. It was revealed that increasing sintering temperature improves the density of composites by increasing their diffusion rates. In addition, significant improvements in the hardness, tensile properties and compressive properties of the composites were observed at higher sintering temperatures. It was also discovered that composites with higher alumina concentrations experienced agglomeration and were more porous than other composites. A micro-structural examination showed that composites with higher concentrations of nano-alumina had a finer grain structure than other composites and underwent a marginal reduction in grain size. However, the tensile and compressive properties of composites decreased when the nano-alumina content was increased to 1.0 wt%. The magnesium hybrid composite containing 3.0 wt% micro-alumina and 0.5 wt% nano-alumina sintered at 450 °C displayed the greatest tensile strength properties in all composites studied. A transformation from brittle to mixed-mode failure, with sufficient evidence of increased plastic deformation, was also noted in the hybrid composites. The present study suggests that adding up to 0.5 wt% nano-alumina and employing a higher sintering temperature enhances the overall characteristics of magnesium/alumina micro-composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H. Newly developed magnesium alloys for powertrain applications. JOM. 2003;55(11):30. Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H. Newly developed magnesium alloys for powertrain applications. JOM. 2003;55(11):30.
[2]
go back to reference Watarai H. Trend of research and development for magnesium alloys. Sci Technol. 2006;7(18):84. Watarai H. Trend of research and development for magnesium alloys. Sci Technol. 2006;7(18):84.
[3]
go back to reference Sankaranarayanan S, Habibi MK, Jayalakshmi S, Jia Ai K, Almajid A, Gupta M. Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties. Mater Sci Technol. 2015;31(9):1122. Sankaranarayanan S, Habibi MK, Jayalakshmi S, Jia Ai K, Almajid A, Gupta M. Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties. Mater Sci Technol. 2015;31(9):1122.
[4]
go back to reference Callister WD, Rethwisch DG. Materials Science and Engineering. Hoboken: Wiley; 2011. 157. Callister WD, Rethwisch DG. Materials Science and Engineering. Hoboken: Wiley; 2011. 157.
[5]
go back to reference Luo AA. Magnesium: current and potential automotive applications. JOM. 2002;54(2):42. Luo AA. Magnesium: current and potential automotive applications. JOM. 2002;54(2):42.
[6]
go back to reference Wang YN, Huang JC. Texture analysis in hexagonal materials. Mater Chem Phys. 2003;81(1):11. Wang YN, Huang JC. Texture analysis in hexagonal materials. Mater Chem Phys. 2003;81(1):11.
[7]
go back to reference Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev. 1994;39(1):1. Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev. 1994;39(1):1.
[8]
go back to reference Kainer KU. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering. Weinheim: Wiley; 2006. 154. Kainer KU. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering. Weinheim: Wiley; 2006. 154.
[9]
go back to reference Goh CS, Wei J, Lee LC, Gupta M. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology. 2005;17(1):7. Goh CS, Wei J, Lee LC, Gupta M. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology. 2005;17(1):7.
[10]
go back to reference Kvashnin DG, Krasheninnikov AV, Shtansky D, Sorokin PB, Golberg D. Nanostructured BN–Mg composites: features of interface bonding and mechanical properties. Phys Chem Chem Phys. 2016;18(2):965. Kvashnin DG, Krasheninnikov AV, Shtansky D, Sorokin PB, Golberg D. Nanostructured BN–Mg composites: features of interface bonding and mechanical properties. Phys Chem Chem Phys. 2016;18(2):965.
[11]
go back to reference Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des. 2014;57:638. Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des. 2014;57:638.
[12]
go back to reference Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137. Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137.
[13]
go back to reference Zhang Z, Han BQ, Witkin D, Ajdelsztajn L, Laverna EJ. Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al–Ni–La amorphous particles. Scr Mater. 2006;54(5):869. Zhang Z, Han BQ, Witkin D, Ajdelsztajn L, Laverna EJ. Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al–Ni–La amorphous particles. Scr Mater. 2006;54(5):869.
[14]
go back to reference Sankaranarayanan S, HemanthShankar V, Jayalakshmi S, Bau NQ, Gupta M. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J Alloys Compd. 2015;627:192. Sankaranarayanan S, HemanthShankar V, Jayalakshmi S, Bau NQ, Gupta M. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J Alloys Compd. 2015;627:192.
[15]
go back to reference Tun KS, Gupta M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol. 2007;67(13):2657. Tun KS, Gupta M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol. 2007;67(13):2657.
[16]
go back to reference Paramsothy M, Hassan SF, Srikanth N, Gupta M. Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A. 2009;527(1–2):162. Paramsothy M, Hassan SF, Srikanth N, Gupta M. Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A. 2009;527(1–2):162.
[17]
go back to reference Hassan SF, Gupta M. Development of high performance magnesium nanocomposites using solidification processing route. Mater Sci Technol. 2004;201(11):1383. Hassan SF, Gupta M. Development of high performance magnesium nanocomposites using solidification processing route. Mater Sci Technol. 2004;201(11):1383.
[18]
go back to reference Hassan SF, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A. 2005;392(1–2):163. Hassan SF, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A. 2005;392(1–2):163.
[19]
go back to reference Hassan SF, Gupta M. Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci. 2006;41(8):2229. Hassan SF, Gupta M. Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci. 2006;41(8):2229.
[20]
go back to reference Wong WL, Eugene MG. Improving overall mechanical performance of magnesium using nano-alumina reinforcement and energy efficient microwave assisted processing route. Adv Eng Mater. 2007;9(10):902. Wong WL, Eugene MG. Improving overall mechanical performance of magnesium using nano-alumina reinforcement and energy efficient microwave assisted processing route. Adv Eng Mater. 2007;9(10):902.
[21]
go back to reference Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3(1):79. Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3(1):79.
[22]
go back to reference Devaraju A, Kumar A, Kotiveerachari B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des. 2013;45:576. Devaraju A, Kumar A, Kotiveerachari B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des. 2013;45:576.
[23]
go back to reference Feng YC, Geng L, Zheng PQ, Zheng ZZ, Wang GS. Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater Des. 2008;29(10):2023. Feng YC, Geng L, Zheng PQ, Zheng ZZ, Wang GS. Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater Des. 2008;29(10):2023.
[24]
go back to reference Wong WLE, Karthik S, Gupta M. Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route. J Mater Sci. 2005;40(13):3395. Wong WLE, Karthik S, Gupta M. Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route. J Mater Sci. 2005;40(13):3395.
[25]
go back to reference Tun KS, Gupta M. Development of magnesium/(yttria + nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Compd. 2009;487(1–2):76. Tun KS, Gupta M. Development of magnesium/(yttria + nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Compd. 2009;487(1–2):76.
[26]
go back to reference Mondal AK, Kumar S. Impression creep behaviour of magnesium alloy-based hybrid composites in the longitudinal direction. Compos Sci Technol. 2008;68(15):3251. Mondal AK, Kumar S. Impression creep behaviour of magnesium alloy-based hybrid composites in the longitudinal direction. Compos Sci Technol. 2008;68(15):3251.
[27]
go back to reference Zhong XK, Li Q, Chen B, Wang JP, Hu JY, Hu W. Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corros Sci. 2009;51(12):2950. Zhong XK, Li Q, Chen B, Wang JP, Hu JY, Hu W. Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corros Sci. 2009;51(12):2950.
[28]
go back to reference Zhou YJ, Jiang AY, Liu JX. The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy. Appl Mech Mater. 2013;377(1):250. Zhou YJ, Jiang AY, Liu JX. The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy. Appl Mech Mater. 2013;377(1):250.
[29]
go back to reference Bhuiyan MA, Hoque SM, Choudhury S. Effects of sintering temperature on microstructure and magnetic properties of NiFe2O4 prepared from nano size powder of NiO and Fe2O3. J Bangl Acad Sci. 2010;34(2):189. Bhuiyan MA, Hoque SM, Choudhury S. Effects of sintering temperature on microstructure and magnetic properties of NiFe2O4 prepared from nano size powder of NiO and Fe2O3. J Bangl Acad Sci. 2010;34(2):189.
[30]
go back to reference Manan A, Iqbal Y, Qazi I. The effect of sintering temperature on phase, microstructure and properties of Sr5Nb4TiO17. J Phys Conf Ser. 2010;241(1):28. Manan A, Iqbal Y, Qazi I. The effect of sintering temperature on phase, microstructure and properties of Sr5Nb4TiO17. J Phys Conf Ser. 2010;241(1):28.
[31]
go back to reference Thakur SK, Kwee GT, Gupta M. Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci. 2007;42(24):10040. Thakur SK, Kwee GT, Gupta M. Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci. 2007;42(24):10040.
[32]
go back to reference Erfan Y, Kashani-Bozorg SF. Fabrication of Mg/SiC nanocomposite surface layer using friction stir processing technique. Int J Nanosci Ser. 2011;10(4–5):1073. Erfan Y, Kashani-Bozorg SF. Fabrication of Mg/SiC nanocomposite surface layer using friction stir processing technique. Int J Nanosci Ser. 2011;10(4–5):1073.
[33]
go back to reference Hassan SF, Gupta M. Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos Struct. 2006;72(1):19. Hassan SF, Gupta M. Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos Struct. 2006;72(1):19.
[34]
go back to reference Kang YC, Chan SLI. Tensile properties of Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys. 2004;85(2):438. Kang YC, Chan SLI. Tensile properties of Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys. 2004;85(2):438.
[35]
go back to reference Min KH, Kang SP, Kim DG, Kim YD. Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders. J Alloys Compd. 2005;400(1–2):150. Min KH, Kang SP, Kim DG, Kim YD. Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders. J Alloys Compd. 2005;400(1–2):150.
[36]
go back to reference Ferkel H, Mordike BL. Magnesium strengthened by SiC nanoparticles. Mater Sci Eng A. 2001;298(1–2):193. Ferkel H, Mordike BL. Magnesium strengthened by SiC nanoparticles. Mater Sci Eng A. 2001;298(1–2):193.
[37]
go back to reference Wong WLE, Gupta M, Lim CYH. Enhancing the mechanical properties of pure aluminum using hybrid reinforcement methodology. Mater Sci Eng A. 2006;423(1–2):148. Wong WLE, Gupta M, Lim CYH. Enhancing the mechanical properties of pure aluminum using hybrid reinforcement methodology. Mater Sci Eng A. 2006;423(1–2):148.
[38]
go back to reference Hassan SF, Gupta M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd. 2006;419:84. Hassan SF, Gupta M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd. 2006;419:84.
[39]
go back to reference Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater. 2001;45(1):89. Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater. 2001;45(1):89.
[40]
go back to reference Tan MJ, Zhang X. Powder metal matrix composites: selection and processing. Mater Sci Eng A. 1998;244:80. Tan MJ, Zhang X. Powder metal matrix composites: selection and processing. Mater Sci Eng A. 1998;244:80.
[41]
go back to reference Gale WF, Totemeier TC. Smithells Metals Reference Book. Oxford: Elsevier Butterworth-Heinemann; 2004. 15. Gale WF, Totemeier TC. Smithells Metals Reference Book. Oxford: Elsevier Butterworth-Heinemann; 2004. 15.
[42]
go back to reference Bauccio M. ASM Metals Reference Book. Novelty: ASM International; 1993. 248. Bauccio M. ASM Metals Reference Book. Novelty: ASM International; 1993. 248.
[43]
go back to reference Barnett MR, Keshavarz Z, Beer AG, Atwell D. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52(17):5093. Barnett MR, Keshavarz Z, Beer AG, Atwell D. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52(17):5093.
[44]
go back to reference Yang HJ, Yin SM, Huang CX, Zhang ZF, Wu SD, Li SX, Liu YD. EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv Eng Mater. 2008;10(10):955. Yang HJ, Yin SM, Huang CX, Zhang ZF, Wu SD, Li SX, Liu YD. EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv Eng Mater. 2008;10(10):955.
[45]
go back to reference Zhong XL, Wong WLE, Gupta M. Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater. 2007;55(18):6338. Zhong XL, Wong WLE, Gupta M. Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater. 2007;55(18):6338.
[46]
go back to reference Goh CS, Wei J, Lee LC, Gupta M. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A. 2006;423(1–2):153. Goh CS, Wei J, Lee LC, Gupta M. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A. 2006;423(1–2):153.
[47]
go back to reference Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press; 1999. 244. Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press; 1999. 244.
[48]
go back to reference Hassan SF, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A. 2005;36(8):2253. Hassan SF, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A. 2005;36(8):2253.
[49]
go back to reference Barnett MR. Twinning and the ductility of magnesium alloys: part I: “Tension” twins. Mater Sci Eng A. 2007;464(1–2):1. Barnett MR. Twinning and the ductility of magnesium alloys: part I: “Tension” twins. Mater Sci Eng A. 2007;464(1–2):1.
[50]
go back to reference Nguyen QB, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos Sci Technol. 2008;68(10):2185. Nguyen QB, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos Sci Technol. 2008;68(10):2185.
Metadata
Title
Behaviour of micro- and   nano-alumina-reinforced Mg–3Zn–0.7Zr–1Cu alloy composites processed at different sintering temperatures
Authors
Eacherath Suneesh
Murugesan Sivapragash
Publication date
03-09-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01281-8

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners