Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2022

29-09-2021 | Research Article-Mechanical Engineering

Intelligent Computing with Levenberg–Marquardt Backpropagation Neural Networks for Third-Grade Nanofluid Over a Stretched Sheet with Convective Conditions

Authors: Muhammad Shoaib, Muhammad Asif Zahoor Raja, Ghania Zubair, Imrana Farhat, Kottakkaran Sooppy Nisar, Zulqurnain Sabir, Wasim Jamshed

Published in: Arabian Journal for Science and Engineering | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article discussed the influence of activation energy on MHD flow of third-grade nanofluid model (MHD-TGNFM) along with the convective conditions and used the technique of backpropagation in artificial neural network using Levenberg–Marquardt technique (BANN-LMT). The PDEs representing (MHD-TGNFM) transformed into the system of ODEs. The dataset for BANN-LMT is computed for the six scenarios by using the Adam numerical method by varying the local Hartman number (Ha), Prandtl number (Pr), local chemical reaction parameter (σ), Schmidt number (Sc), concentration Biot number (γ2) and thermal Biot number (γ1). By testing, validation and training process of (BANN-LMT), the estimated solutions are interpreted for (MHD-TGNFM). The validation of the performance of (BANN-LMT) is done through the MSE, error histogram and regression analysis. The concentration profile increases when there is an increase in Biot number and the local Hartmann number; meanwhile, it decreases for the higher values of Schmidt number and the local chemical reaction parameter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, S.U.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL, United States (1995) Choi, S.U.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL, United States (1995)
2.
go back to reference Jang, S.P.; Choi, S.U.: Role of brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84(21), 4316–4318 (2004)CrossRef Jang, S.P.; Choi, S.U.: Role of brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84(21), 4316–4318 (2004)CrossRef
3.
go back to reference Shukla, R.K.; Dhir, V.K.: Effect of Brownian motion on thermal conductivity of nano fluids. J. Heat Transf. 130, 042406 (2008)CrossRef Shukla, R.K.; Dhir, V.K.: Effect of Brownian motion on thermal conductivity of nano fluids. J. Heat Transf. 130, 042406 (2008)CrossRef
4.
go back to reference Shukla, R.K.; Dhir, V.K.: Effect of Brownian motion on thermal conductivity of nanofluids. J. Heat Transf. 130(4) (2008) Shukla, R.K.; Dhir, V.K.: Effect of Brownian motion on thermal conductivity of nanofluids. J. Heat Transf. 130(4) (2008)
5.
go back to reference Bhatti, M.M.; Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. 1–10 (2020) Bhatti, M.M.; Michaelides, E.E.: Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. 1–10 (2020)
6.
go back to reference Souayeh, B.; Kumar, K.G.; Reddy, M.G.; Rani, S.; Hdhiri, N.; Alfannakh, H.; Rahimi-Gorji, M.: Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J. Mol. Liq. 290, 111223 (2019)CrossRef Souayeh, B.; Kumar, K.G.; Reddy, M.G.; Rani, S.; Hdhiri, N.; Alfannakh, H.; Rahimi-Gorji, M.: Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J. Mol. Liq. 290, 111223 (2019)CrossRef
7.
go back to reference Makinde, O.D.; Mabood, F.; Khan, W.A.; Tshehla, M.S.: MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J. Mol. Liq. 219, 624–630 (2016)CrossRef Makinde, O.D.; Mabood, F.; Khan, W.A.; Tshehla, M.S.: MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J. Mol. Liq. 219, 624–630 (2016)CrossRef
8.
go back to reference Sheremet, M.A.; Pop, I.; Rosca, N.C.: Magnetic field effect on unsteady natural convection in a wavy-walled cavity filled with a nanofluid: buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)CrossRef Sheremet, M.A.; Pop, I.; Rosca, N.C.: Magnetic field effect on unsteady natural convection in a wavy-walled cavity filled with a nanofluid: buongiorno’s mathematical model. J. Taiwan Inst. Chem. Eng. 61, 211–222 (2016)CrossRef
9.
go back to reference Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)CrossRef Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)CrossRef
10.
go back to reference Buongiorno, J.: Convective transport in nanofluids (2006) Buongiorno, J.: Convective transport in nanofluids (2006)
11.
go back to reference Ghahremanian, S.; Abbassi, A.; Mansoori, Z.; Toghraie, D.: Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena. J. Mol. Liq. 311, 113310 (2020)CrossRef Ghahremanian, S.; Abbassi, A.; Mansoori, Z.; Toghraie, D.: Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena. J. Mol. Liq. 311, 113310 (2020)CrossRef
12.
go back to reference Ahmad, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.: Inspection of Coriolis and Lorentz forces in nanomaterial flow of non-Newtonian fluid with activation energy. Phys. A Stat. Mech. Appl. 540, 123057 (2020)MathSciNetMATHCrossRef Ahmad, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.: Inspection of Coriolis and Lorentz forces in nanomaterial flow of non-Newtonian fluid with activation energy. Phys. A Stat. Mech. Appl. 540, 123057 (2020)MathSciNetMATHCrossRef
13.
go back to reference Awad, F.G.; Sibanda, P.; Khidir, A.A.: Thermodiffusion effects on magneto-nanofluid flow over a stretching sheet. Bound. Value Probl. 2013(1), 1–13 (2013)MathSciNetMATHCrossRef Awad, F.G.; Sibanda, P.; Khidir, A.A.: Thermodiffusion effects on magneto-nanofluid flow over a stretching sheet. Bound. Value Probl. 2013(1), 1–13 (2013)MathSciNetMATHCrossRef
14.
go back to reference Reddy, M.G.: Influence of thermal radiation, viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Eng. J. 5(1), 169–175 (2014)CrossRef Reddy, M.G.: Influence of thermal radiation, viscous dissipation and hall current on MHD convection flow over a stretched vertical flat plate. Ain Shams Eng. J. 5(1), 169–175 (2014)CrossRef
15.
go back to reference Reddy, M.G.: Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. Eur. Phys. J. Plus 129(3), 1–17 (2014) Reddy, M.G.: Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. Eur. Phys. J. Plus 129(3), 1–17 (2014)
16.
go back to reference Jonnadula, M.; Polarapu, P.; Reddy, G.: Influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface. Procedia Eng. 127, 1315–1322 (2015)CrossRef Jonnadula, M.; Polarapu, P.; Reddy, G.: Influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface. Procedia Eng. 127, 1315–1322 (2015)CrossRef
17.
go back to reference Ramzan, M.; Gul, H.; Kadry, S.; Chu, Y.M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)CrossRef Ramzan, M.; Gul, H.; Kadry, S.; Chu, Y.M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)CrossRef
18.
go back to reference Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim. 143(2) (2021) Mahanthesh, B.; Shehzad, S.A.; Ambreen, T.; Khan, S.U.: Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge. J. Therm. Anal. Calorim. 143(2) (2021)
19.
go back to reference Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.: Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip. Model. Mater. Struct. (2018) Shashikumar, N.S.; Gireesha, B.J.; Mahanthesh, B.; Prasannakumara, B.C.: Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects. Multidiscip. Model. Mater. Struct. (2018)
20.
go back to reference Mackolil, J.; Mahanthesh, B.: Exact and statistical computations of radiated flow of nano and Casson fluids under heat and mass flux conditions. Journal of Computational Design and Engineering 6(4), 593–605 (2019)CrossRef Mackolil, J.; Mahanthesh, B.: Exact and statistical computations of radiated flow of nano and Casson fluids under heat and mass flux conditions. Journal of Computational Design and Engineering 6(4), 593–605 (2019)CrossRef
21.
go back to reference Mahanthesh, B.; Joseph, T.V.: Dynamics of magneto-nano third-grade fluid with Brownian motion and thermophoresis effects in the pressure type die. J Nanofluids 8(4), 870–875 (2019)CrossRef Mahanthesh, B.; Joseph, T.V.: Dynamics of magneto-nano third-grade fluid with Brownian motion and thermophoresis effects in the pressure type die. J Nanofluids 8(4), 870–875 (2019)CrossRef
22.
go back to reference Mackolil, J.; Mahanthesh, B.: Sensitivity analysis of Marangoni convection in TiO 2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. J. Therm. Anal. Calorim. 143(3), 2085–2098 (2021)CrossRef Mackolil, J.; Mahanthesh, B.: Sensitivity analysis of Marangoni convection in TiO 2–EG nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. J. Therm. Anal. Calorim. 143(3), 2085–2098 (2021)CrossRef
23.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.R.: Nanoparticles effect on 3D flow, heat and mass transfer of nanofluid with nonlinear radiation, thermal-diffusion and diffusion-thermo effects. J. Nanofluids 5(5), 669–678 (2016)CrossRef Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.R.: Nanoparticles effect on 3D flow, heat and mass transfer of nanofluid with nonlinear radiation, thermal-diffusion and diffusion-thermo effects. J. Nanofluids 5(5), 669–678 (2016)CrossRef
24.
go back to reference Lade, R.; Wasewar, K.; Sangtyani, R.; Kumar, A.; Peshwe, D.; Shende, D.: Effect of aluminium nanoparticles on rheology of AP based comsposite propellant: experimental study and mathematical modelling. Molecular Simulation 1–10 (2021) Lade, R.; Wasewar, K.; Sangtyani, R.; Kumar, A.; Peshwe, D.; Shende, D.: Effect of aluminium nanoparticles on rheology of AP based comsposite propellant: experimental study and mathematical modelling. Molecular Simulation 1–10 (2021)
25.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Ibrar, N.; Thriveni, K.: Analysis of a magnetic field and Hall effects in nanoliquid flow under insertion of dust particles. Heat Transf. 49(3), 1632–1648 (2020)CrossRef Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Ibrar, N.; Thriveni, K.: Analysis of a magnetic field and Hall effects in nanoliquid flow under insertion of dust particles. Heat Transf. 49(3), 1632–1648 (2020)CrossRef
26.
go back to reference Mahanthesh, B.: Statistical and exact analysis of MHD flow due to hybrid nanoparticles suspended in C2H6O2-H2O hybrid base fluid. In: Mathematical methods in engineering and applied sciences, pp. 185–228. CRC Press, Florida (2020) Mahanthesh, B.: Statistical and exact analysis of MHD flow due to hybrid nanoparticles suspended in C2H6O2-H2O hybrid base fluid. In: Mathematical methods in engineering and applied sciences, pp. 185–228. CRC Press, Florida (2020)
27.
go back to reference Mahanthesh, B.; Shashikumar, N.S.; Lorenzini, G.: Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. J. Therm. Anal. Calorim. 1–9 (2020) Mahanthesh, B.; Shashikumar, N.S.; Lorenzini, G.: Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. J. Therm. Anal. Calorim. 1–9 (2020)
28.
go back to reference Thriveni, K.; Mahanthesh, B.: Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation. Eur. Phys. J. Plus 135(6), 1–22 (2020)CrossRef Thriveni, K.; Mahanthesh, B.: Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation. Eur. Phys. J. Plus 135(6), 1–22 (2020)CrossRef
29.
go back to reference Abdel-Rahman, G.M.: Unsteady magnetohydrodynamic flow of a non-newtonian nanofluid with thermal radiation effects in non-darcian porous medium over stretching surface. J. Nanofluids 5(5), 721–727 (2016)CrossRef Abdel-Rahman, G.M.: Unsteady magnetohydrodynamic flow of a non-newtonian nanofluid with thermal radiation effects in non-darcian porous medium over stretching surface. J. Nanofluids 5(5), 721–727 (2016)CrossRef
30.
go back to reference Hussanan, A.; Ismail, Z.; Khan, I.; Hussein, A.G.; Shafie, S.: Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. Eur. Phys. J. Plus 129(3), 1–16 (2014)CrossRef Hussanan, A.; Ismail, Z.; Khan, I.; Hussein, A.G.; Shafie, S.: Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating. Eur. Phys. J. Plus 129(3), 1–16 (2014)CrossRef
31.
go back to reference Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 108, 1340–1346 (2017)CrossRef Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 108, 1340–1346 (2017)CrossRef
32.
go back to reference Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)MATHCrossRef Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)MATHCrossRef
33.
go back to reference Hamad, M.A.A.; Pop, I.: Scaling transformations for boundary layer flow near the stagnation-point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects. Transp. Porous Media 87(1), 25–39 (2011)MathSciNetCrossRef Hamad, M.A.A.; Pop, I.: Scaling transformations for boundary layer flow near the stagnation-point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects. Transp. Porous Media 87(1), 25–39 (2011)MathSciNetCrossRef
34.
go back to reference Pal, D.; Mandal, G.: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation. J. Petrol. Sci. Eng. 126, 16–25 (2015)CrossRef Pal, D.; Mandal, G.: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation. J. Petrol. Sci. Eng. 126, 16–25 (2015)CrossRef
35.
go back to reference Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv. Powder Technol. 27(5), 2223–2231 (2016)CrossRef Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv. Powder Technol. 27(5), 2223–2231 (2016)CrossRef
36.
go back to reference Magyari, E.; Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 32(5), 577 (1999)CrossRef Magyari, E.; Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 32(5), 577 (1999)CrossRef
37.
go back to reference Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184(2), 864–873 (2007)MathSciNetMATH Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184(2), 864–873 (2007)MathSciNetMATH
38.
go back to reference Seth, G.S.; Mishra, M.K.: Analysis of transient flow of MHD nanofluid past a non-linear stretching sheet considering Navier’s slip boundary condition. Adv. Powder Technol. 28(2), 375–384 (2017)CrossRef Seth, G.S.; Mishra, M.K.: Analysis of transient flow of MHD nanofluid past a non-linear stretching sheet considering Navier’s slip boundary condition. Adv. Powder Technol. 28(2), 375–384 (2017)CrossRef
39.
go back to reference Jamshed, W.; Eid, M.R.; Nasir, N.A.A.M.; Nisar, K.S.; Aziz, A.; Shahzad, F.; Saleel, C.A.; Shukla, A.: Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: a noble case study. Case Stud Therm. Eng. 27, 101258 (2021)CrossRef Jamshed, W.; Eid, M.R.; Nasir, N.A.A.M.; Nisar, K.S.; Aziz, A.; Shahzad, F.; Saleel, C.A.; Shukla, A.: Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: a noble case study. Case Stud Therm. Eng. 27, 101258 (2021)CrossRef
40.
go back to reference Al-Hossainy, A.F.; Eid, M.R.: Combined theoretical and experimental DFT-TDDFT and thermal characteristics of 3-D flow in rotating tube of [PEG+ H2O/SiO2-Fe3O4] C hybrid nanofluid to enhancing oil extraction. Waves Random Complex Media 1–26 (2021) Al-Hossainy, A.F.; Eid, M.R.: Combined theoretical and experimental DFT-TDDFT and thermal characteristics of 3-D flow in rotating tube of [PEG+ H2O/SiO2-Fe3O4] C hybrid nanofluid to enhancing oil extraction. Waves Random Complex Media 1–26 (2021)
41.
go back to reference Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Shahzad, F.; Eid, M.R.: Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J. Market. Res. 14, 985–1006 (2021) Jamshed, W.; Nisar, K.S.; Ibrahim, R.W.; Shahzad, F.; Eid, M.R.: Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J. Market. Res. 14, 985–1006 (2021)
42.
go back to reference Sajid, T.; Jamshed, W.; Shahzad, F.; Eid, M.R.; Alshehri, H.M.; Goodarzi, M.; Akgül, E.K.; Nisar, K.S.: Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Phys. Scr. 96(10), 104010 (2021)CrossRef Sajid, T.; Jamshed, W.; Shahzad, F.; Eid, M.R.; Alshehri, H.M.; Goodarzi, M.; Akgül, E.K.; Nisar, K.S.: Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Phys. Scr. 96(10), 104010 (2021)CrossRef
43.
go back to reference Sajid, T.; Jamshed, W.; Shahzad, F.; El Boukili, A.; Ez-Zahraouy, H.; Nisar, K.S.; Eid, M.R.: Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philippoff hybrid nanofluid past a parabolic trough: Keller box method. Phys. Scr. (2021) Sajid, T.; Jamshed, W.; Shahzad, F.; El Boukili, A.; Ez-Zahraouy, H.; Nisar, K.S.; Eid, M.R.: Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philippoff hybrid nanofluid past a parabolic trough: Keller box method. Phys. Scr. (2021)
44.
go back to reference Shahzad, F.; Jamshed, W.; Sajid, T.; Nisar, K.S.; Eid, M.R.: Heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable surface. Commun. Theor. Phys. 73(7), 075004 (2021)CrossRef Shahzad, F.; Jamshed, W.; Sajid, T.; Nisar, K.S.; Eid, M.R.: Heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable surface. Commun. Theor. Phys. 73(7), 075004 (2021)CrossRef
45.
go back to reference Nazeer, M.; Khan, M.I.; Chu, Y.M.; Kadry, S.; Eid, M.R.: Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment. J. Dispers. Sci. Technol. 1–13 (2021) Nazeer, M.; Khan, M.I.; Chu, Y.M.; Kadry, S.; Eid, M.R.: Mathematical modeling of multiphase flows of third-grade fluid with lubrication effects through an inclined channel: analytical treatment. J. Dispers. Sci. Technol. 1–13 (2021)
46.
go back to reference Shamshuddin, M.D. and Eid, M.R., 2021. n th order reactive nanoliquid through convective elongated sheet under mixed convection flow with joule heating effects. Journal of Thermal Analysis and Calorimetry, pp.1–15. Shamshuddin, M.D. and Eid, M.R., 2021. n th order reactive nanoliquid through convective elongated sheet under mixed convection flow with joule heating effects. Journal of Thermal Analysis and Calorimetry, pp.1–15.
47.
go back to reference Sajid, M.: Application of parameter differentiation for flow of a third grade fluid past an infinite porous plate. Numer. Methods Partial Differ. Equ. Int. J. 26(1), 221–228 (2010)MathSciNetMATHCrossRef Sajid, M.: Application of parameter differentiation for flow of a third grade fluid past an infinite porous plate. Numer. Methods Partial Differ. Equ. Int. J. 26(1), 221–228 (2010)MathSciNetMATHCrossRef
48.
go back to reference Rajagopal, K.R.; Szeri, A.Z.; Troy, W.: An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech. 21(4), 279–289 (1986)MathSciNetMATHCrossRef Rajagopal, K.R.; Szeri, A.Z.; Troy, W.: An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech. 21(4), 279–289 (1986)MathSciNetMATHCrossRef
49.
go back to reference Cortell, R.: Numerical solutions for the flow of a fluid of grade three past an infinite porous plate. Int. J. Non-Linear Mech. 28(6), 623–626 (1993)MATHCrossRef Cortell, R.: Numerical solutions for the flow of a fluid of grade three past an infinite porous plate. Int. J. Non-Linear Mech. 28(6), 623–626 (1993)MATHCrossRef
50.
go back to reference Mekheimer, K.S.; Hasona, W.M.; Abo-Elkhair, R.E.; Zaher, A.Z.: Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys. Lett. A 382(2–3), 85–93 (2018)MathSciNetMATHCrossRef Mekheimer, K.S.; Hasona, W.M.; Abo-Elkhair, R.E.; Zaher, A.Z.: Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys. Lett. A 382(2–3), 85–93 (2018)MathSciNetMATHCrossRef
51.
go back to reference Hatami, M.; Hatami, J.; Ganji, D.D.: Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Methods Programs Biomed. 113(2), 632–641 (2014)CrossRef Hatami, M.; Hatami, J.; Ganji, D.D.: Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Methods Programs Biomed. 113(2), 632–641 (2014)CrossRef
52.
go back to reference Hamzehnezhad, A.; Fakour, M.; Ganji, D.D.; Rahbari, A.: Heat transfer and fluid flow of blood flow containing nanoparticles through porous blood vessels with magnetic field. Math. Biosci 283, 38–47 (2017)MathSciNetMATHCrossRef Hamzehnezhad, A.; Fakour, M.; Ganji, D.D.; Rahbari, A.: Heat transfer and fluid flow of blood flow containing nanoparticles through porous blood vessels with magnetic field. Math. Biosci 283, 38–47 (2017)MathSciNetMATHCrossRef
53.
go back to reference Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y.: Applying artificial neural networks (ANNs) to solve solid waste-related issues: a critical review. Waste Manage. 124, 385–402 (2021)CrossRef Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y.: Applying artificial neural networks (ANNs) to solve solid waste-related issues: a critical review. Waste Manage. 124, 385–402 (2021)CrossRef
54.
go back to reference Mangini, S.; Tacchino, F.; Gerace, D.; Bajoni, D.; Macchiavello, C.: Quantum computing models for artificial neural networks. EPL (Europhysics Letters) 134(1), 10002 (2021)CrossRef Mangini, S.; Tacchino, F.; Gerace, D.; Bajoni, D.; Macchiavello, C.: Quantum computing models for artificial neural networks. EPL (Europhysics Letters) 134(1), 10002 (2021)CrossRef
55.
go back to reference Zafar, S.; Nazir, M.; Sabah, A.; Jurcut, A.D.: Securing bio-cyber interface for the internet of bio-nano things using particle swarm optimization and artificial neural networks based parameter profiling. Comput. Biol. Med. 136, 104707 (2021)CrossRef Zafar, S.; Nazir, M.; Sabah, A.; Jurcut, A.D.: Securing bio-cyber interface for the internet of bio-nano things using particle swarm optimization and artificial neural networks based parameter profiling. Comput. Biol. Med. 136, 104707 (2021)CrossRef
56.
go back to reference Withington, L.; de Vera, D.D.P.; Guest, C.; Mancini, C.; Piwek, P.: Artificial neural networks for classifying the time series sensor data generated by medical detection dogs. Expert Syst. Appl. 184, 115564 (2021)CrossRef Withington, L.; de Vera, D.D.P.; Guest, C.; Mancini, C.; Piwek, P.: Artificial neural networks for classifying the time series sensor data generated by medical detection dogs. Expert Syst. Appl. 184, 115564 (2021)CrossRef
57.
go back to reference Santoni, M.; Piva, F.; Porta, C.; Bracarda, S.; Heng, D.Y.; Matrana, M.R.; Grande, E.; Mollica, V.; Aurilio, G.; Rizzo, M.; Giulietti, M.: Artificial neural networks as a way to predict future kidney cancer incidence in the United States. Clin. Genitourin. Cancer 19(2), e84–e91 (2021)CrossRef Santoni, M.; Piva, F.; Porta, C.; Bracarda, S.; Heng, D.Y.; Matrana, M.R.; Grande, E.; Mollica, V.; Aurilio, G.; Rizzo, M.; Giulietti, M.: Artificial neural networks as a way to predict future kidney cancer incidence in the United States. Clin. Genitourin. Cancer 19(2), e84–e91 (2021)CrossRef
58.
go back to reference Sermesant, M.; Delingette, H.; Cochet, H.; Jaïs, P.; Ayache, N.: Applications of artificial intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 1–10 (2021) Sermesant, M.; Delingette, H.; Cochet, H.; Jaïs, P.; Ayache, N.: Applications of artificial intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 1–10 (2021)
59.
go back to reference Shoaib, M.; Raja, M.A.Z.; Farhat, I.; Shah, Z.; Kumam, P.; Islam, S.: Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer. Alex. Eng. J. (2021) Shoaib, M.; Raja, M.A.Z.; Farhat, I.; Shah, Z.; Kumam, P.; Islam, S.: Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer. Alex. Eng. J. (2021)
60.
go back to reference Almalki, M.M.; Alaidarous, E.S.; Maturi, D.; Raja, M.A.Z.; Shoaib, M.: A Levenberg–marquardt backpropagation neural network for the numerical treatment of squeezing flow with heat transfer model. IEEE Access. 6, 227340–227348 (2020)CrossRef Almalki, M.M.; Alaidarous, E.S.; Maturi, D.; Raja, M.A.Z.; Shoaib, M.: A Levenberg–marquardt backpropagation neural network for the numerical treatment of squeezing flow with heat transfer model. IEEE Access. 6, 227340–227348 (2020)CrossRef
61.
go back to reference Shoaib, M.; et al.: Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation. Surf. Interfaces 101243 (2021) Shoaib, M.; et al.: Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation. Surf. Interfaces 101243 (2021)
62.
go back to reference Sabir, Z.; et al.: Design of stochastic numerical solver for the solution of singular three-point second-order boundary value problems. Neural Comput. Appl. 1–17 (2020) Sabir, Z.; et al.: Design of stochastic numerical solver for the solution of singular three-point second-order boundary value problems. Neural Comput. Appl. 1–17 (2020)
63.
go back to reference Ahmad, I., et al.: Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 31(12), 9041–9059 (2019)CrossRef Ahmad, I., et al.: Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 31(12), 9041–9059 (2019)CrossRef
64.
go back to reference Ahmad, I.; et al.: Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput. Appl. 1–17 (2020) Ahmad, I.; et al.: Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput. Appl. 1–17 (2020)
65.
go back to reference Shoaib, M., et al.: A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics. Comput. Methods Programs Biomed. 202, 105973 (2021)CrossRef Shoaib, M., et al.: A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics. Comput. Methods Programs Biomed. 202, 105973 (2021)CrossRef
66.
go back to reference Miller, B.L.: A queueing reward system with several customer classes. Manag. Sci. 16(3), 234–245 (1969)MATHCrossRef Miller, B.L.: A queueing reward system with several customer classes. Manag. Sci. 16(3), 234–245 (1969)MATHCrossRef
67.
go back to reference Joseph, D.D.; Renardy, M.; Saut, J.C.: Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Ration. Mech. Anal. 87(3), 213–251 (1985)MathSciNetMATHCrossRef Joseph, D.D.; Renardy, M.; Saut, J.C.: Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Ration. Mech. Anal. 87(3), 213–251 (1985)MathSciNetMATHCrossRef
68.
go back to reference Hayat, T.; Riaz, R.; Aziz, A.; Alsaedi, A.: Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Phys. A Stat. Mech. Appl. 549, 124006 (2020)MathSciNetCrossRef Hayat, T.; Riaz, R.; Aziz, A.; Alsaedi, A.: Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Phys. A Stat. Mech. Appl. 549, 124006 (2020)MathSciNetCrossRef
70.
go back to reference Ramesh, A.N.; Kambhampati, C.; Monson, J.R.; Drew, P.J.: Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)CrossRef Ramesh, A.N.; Kambhampati, C.; Monson, J.R.; Drew, P.J.: Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)CrossRef
71.
go back to reference Chen, J.; Remulla, D.; Nguyen, J.H.; Liu, Y.; Dasgupta, P.; Hung, A.J.: Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 124(4), 567–577 (2019)CrossRef Chen, J.; Remulla, D.; Nguyen, J.H.; Liu, Y.; Dasgupta, P.; Hung, A.J.: Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 124(4), 567–577 (2019)CrossRef
72.
go back to reference Sabir, Z., et al.: Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation. Eur. Phys. J. Plus 135(6), 410 (2020)CrossRef Sabir, Z., et al.: Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation. Eur. Phys. J. Plus 135(6), 410 (2020)CrossRef
73.
go back to reference Jadoon, I., et al.: Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems. Math. Comput. Simul. 181, 444–470 (2020)MathSciNetMATHCrossRef Jadoon, I., et al.: Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems. Math. Comput. Simul. 181, 444–470 (2020)MathSciNetMATHCrossRef
74.
go back to reference Rakha, E.A.; Toss, M.; Shiino, S.; Gamble, P.; Jaroensri, R.; Mermel, C.H.; Chen, P.H.C.: Current and future applications of artificial intelligence in pathology: a clinical perspective. J. Clin. Pathol. 74(7), 409–414 (2021)CrossRef Rakha, E.A.; Toss, M.; Shiino, S.; Gamble, P.; Jaroensri, R.; Mermel, C.H.; Chen, P.H.C.: Current and future applications of artificial intelligence in pathology: a clinical perspective. J. Clin. Pathol. 74(7), 409–414 (2021)CrossRef
75.
go back to reference Shan, T.; Tay, F.R.; Gu, L.: Application of artificial intelligence in dentistry. J. Dent. Res. 100(3), 232–244 (2021)CrossRef Shan, T.; Tay, F.R.; Gu, L.: Application of artificial intelligence in dentistry. J. Dent. Res. 100(3), 232–244 (2021)CrossRef
76.
go back to reference Shoaib, M.; Raja, M.A.Z.; Jamshed, W.; Nisar, K.S.; Khan, I.; Farhat, I.: Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. Int. Commun. Heat Mass Transf. 127, 105544 (2021)CrossRef Shoaib, M.; Raja, M.A.Z.; Jamshed, W.; Nisar, K.S.; Khan, I.; Farhat, I.: Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. Int. Commun. Heat Mass Transf. 127, 105544 (2021)CrossRef
77.
go back to reference Umar, M., et al.: The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm. Sci. 24(5A), 2929 (2020)MathSciNetCrossRef Umar, M., et al.: The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm. Sci. 24(5A), 2929 (2020)MathSciNetCrossRef
78.
go back to reference Shoaib, M., et al.: The effect of slip condition on the three-dimensional flow of Jeffrey fluid along a plane wall with periodic suction. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2495–2503 (2017)MathSciNetCrossRef Shoaib, M., et al.: The effect of slip condition on the three-dimensional flow of Jeffrey fluid along a plane wall with periodic suction. J. Braz. Soc. Mech. Sci. Eng. 39(7), 2495–2503 (2017)MathSciNetCrossRef
79.
go back to reference Siddiqa, S., et al.: Radiative heat transfer analysis of non-Newtonian dusty Casson fluid flow along a complex wavy surface. Numerical Heat Transfer, Part A: Applications 73(4), 209–221 (2018)CrossRef Siddiqa, S., et al.: Radiative heat transfer analysis of non-Newtonian dusty Casson fluid flow along a complex wavy surface. Numerical Heat Transfer, Part A: Applications 73(4), 209–221 (2018)CrossRef
80.
go back to reference Uddin, I.; R. Akhtar, et al.: Numerical treatment for darcy-forchheimer flow of sisko nanomaterial with nonlinear thermal radiation by lobatto IIIA technique. Math. Probl. Eng. 2019 (2019) Uddin, I.; R. Akhtar, et al.: Numerical treatment for darcy-forchheimer flow of sisko nanomaterial with nonlinear thermal radiation by lobatto IIIA technique. Math. Probl. Eng. 2019 (2019)
81.
go back to reference Shoaib, M., et al.: Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 10(1), 1–15 (2020)MathSciNetCrossRef Shoaib, M., et al.: Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 10(1), 1–15 (2020)MathSciNetCrossRef
82.
go back to reference Sabir, Z., et al.: A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm. Sci. 00, 186–186 (2020) Sabir, Z., et al.: A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts. Therm. Sci. 00, 186–186 (2020)
Metadata
Title
Intelligent Computing with Levenberg–Marquardt Backpropagation Neural Networks for Third-Grade Nanofluid Over a Stretched Sheet with Convective Conditions
Authors
Muhammad Shoaib
Muhammad Asif Zahoor Raja
Ghania Zubair
Imrana Farhat
Kottakkaran Sooppy Nisar
Zulqurnain Sabir
Wasim Jamshed
Publication date
29-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06202-5

Other articles of this Issue 7/2022

Arabian Journal for Science and Engineering 7/2022 Go to the issue

Premium Partners