Skip to main content
Top
Published in: Neural Computing and Applications 8/2020

07-06-2019 | Original Article

Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach

Authors: Saumen Maiti, Ch. Ravi Kumar, Prasenjit Sarkar, R. K. Tiwari, Uppala Srinu

Published in: Neural Computing and Applications | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modelling of anomalous geological source from the gravity data is vital for understanding the crustal/sub-crustal interface depths and associated hazard assessment. Two-dimensional radial power spectra have usually been used to infer average depth of protuberant geological structures, which lack details of dimensional comprehension of lateral interfaces. Here in this study, we implement jointly scaled conjugate gradient-based Bayesian neural network (SCG-BNN) scheme with variogram modelling to carve out shallow and deeper interfaces of complex geological terrain of Eastern Indian Shield, India, using Bouguer gravity anomaly (BGA) and altitude variations data. Our “learner codes” uses the SCG-BNN optimization algorithm to build up a statistical model involving appropriate control parameters for the modelling of shallow and deeper interfaces. We have also compared the proposed SCG-BNN modelling results with the results of both conventional artificial neural networks (ANNs) schemes (e.g. conjugate gradient-based ANNs (CG-ANN) and SCG-ANN) and support vector regression (SVR) modelling to demonstrate the robustness of the underlying method. Comparative analysis suggests that the SCG-BNN model produced superior results than the results of CG-ANN, SCG-ANN and SVR models. The results based on SCG-BNN analysis and variogram modelling have identified the existence of three conspicuous fault structures, namely Malda–Kishanganj Fault, Munger–Saharsha Ridge Marginal Fault and Katihar Fault. The analyses also significantly minimize prediction error in three independent datasets (viz. training, validation and test), enhancing the precision of estimated shallow and deeper interface depths and thereby extenuating feasibility of “SCG-BNN” learner code. We, therefore, conclude that the underlying approach is robust to model various interface depths and generate precisely variation in the shallow and deeper interfaces with appropriate input data from altitude variation and BGA. The “SCG-BNN learner scheme” may potentially be used to exploit interface depths from several other complex tectonic regions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine Fracture Zone. J Geophys Res 64:49–59 Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine Fracture Zone. J Geophys Res 64:49–59
2.
go back to reference Cordell L, Henderson RG (1968) Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics 33(4):596–601 Cordell L, Henderson RG (1968) Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics 33(4):596–601
3.
go back to reference Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York Lowrie W (2007) Fundamentals of geophysics, 2nd edn. Cambridge University Press, New York
4.
go back to reference Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67 Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J R Astron Soc 3:63–67
5.
go back to reference Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302 Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302
6.
go back to reference Maus S, Dimri V (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124:113–120 Maus S, Dimri V (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124:113–120
7.
go back to reference Bhattacharyya BK (1966) Continuous spectrum of the total magnetic anomaly due to a rectangular prismatic body. Geophysics 31:97–121 Bhattacharyya BK (1966) Continuous spectrum of the total magnetic anomaly due to a rectangular prismatic body. Geophysics 31:97–121
8.
go back to reference Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390 Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390
9.
go back to reference Naidu PS (1968) Spectrum of the potential field due to randomly distributed sources. Geophysics 33:337–345 Naidu PS (1968) Spectrum of the potential field due to randomly distributed sources. Geophysics 33:337–345
10.
go back to reference Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure appl Geophys 158:799–812 Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure appl Geophys 158:799–812
11.
go back to reference Dash NB, Panda SN, Remesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19:1251–1263 Dash NB, Panda SN, Remesan R, Sahoo N (2010) Hybrid neural modeling for groundwater level prediction. Neural Comput Appl 19:1251–1263
14.
go back to reference Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of artificial neural networks for water quality prediction. Neural Comput Appl 22(Suppl 1):S187–S201 Najah A, El-Shafie A, Karim OA, El-Shafie AH (2013) Application of artificial neural networks for water quality prediction. Neural Comput Appl 22(Suppl 1):S187–S201
15.
go back to reference Poulton M (2001) Computational neural networks for geophysical data processing. Pergamon, Oxford Poulton M (2001) Computational neural networks for geophysical data processing. Pergamon, Oxford
16.
go back to reference Maiti S, Tiwari RK, Kumpel HJ (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys J Int 169:733–746 Maiti S, Tiwari RK, Kumpel HJ (2007) Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site. Geophys J Int 169:733–746
17.
go back to reference Devilee RJR, Curtis A, Roy-Chowdhury K (1999) An efficient probabilistic neural network approach to solving inverse problems: inverting surface wave velocities for Eurasian crustal thickness. J Geophys Res 104(12):28841–28856 Devilee RJR, Curtis A, Roy-Chowdhury K (1999) An efficient probabilistic neural network approach to solving inverse problems: inverting surface wave velocities for Eurasian crustal thickness. J Geophys Res 104(12):28841–28856
18.
go back to reference Abdel Zaher M, Senosy MM, Youssef MM, Ehara S (2009) Thickness variation of the sedimentary cover in the SouthWestern Desert of Egypt as deduced from Bouguer gravity and drill-hole data using neural network method. Earth Planets Space 61:659–674 Abdel Zaher M, Senosy MM, Youssef MM, Ehara S (2009) Thickness variation of the sedimentary cover in the SouthWestern Desert of Egypt as deduced from Bouguer gravity and drill-hole data using neural network method. Earth Planets Space 61:659–674
19.
go back to reference Abedi M, Afshar A, Ardestani VE, Norouzi GH, Lucas C (2010) Application of various methods for 2D inverse modeling of residual gravity anomalies. Acta Geophys 58(2):317–336 Abedi M, Afshar A, Ardestani VE, Norouzi GH, Lucas C (2010) Application of various methods for 2D inverse modeling of residual gravity anomalies. Acta Geophys 58(2):317–336
20.
go back to reference Osman O, Muhittin AA, Ucan ON (2006) A new approach for residual gravity anomaly profile interpretations: forced Neural Network (FNN). Ann Geofis 49(6):1201–1208 Osman O, Muhittin AA, Ucan ON (2006) A new approach for residual gravity anomaly profile interpretations: forced Neural Network (FNN). Ann Geofis 49(6):1201–1208
21.
go back to reference Osman O, Muhittin Albora A, Nuri UO (2007) Forward modeling with forced neural networks for gravity anomaly profile. Math Geol 39:593–605MATH Osman O, Muhittin Albora A, Nuri UO (2007) Forward modeling with forced neural networks for gravity anomaly profile. Math Geol 39:593–605MATH
22.
go back to reference Eslam E, Salem A, Ushijima K (2001) Detection of cavities and tunnels from gravity data using a neural network. Explor Geophys 32(3/4):204–208 Eslam E, Salem A, Ushijima K (2001) Detection of cavities and tunnels from gravity data using a neural network. Explor Geophys 32(3/4):204–208
23.
go back to reference Kaftan I, Salk M, Senol Y (2011) Evaluation of gravity data by using artificial neural network case study: seferihisar geothermal area (Western Turkey). J Appl Geophys 75(4):711–718 Kaftan I, Salk M, Senol Y (2011) Evaluation of gravity data by using artificial neural network case study: seferihisar geothermal area (Western Turkey). J Appl Geophys 75(4):711–718
24.
go back to reference Al-Garni MA (2013) Inversion of residual gravity anomalies using neural network. Arab J Geosci 6:1509–1516 Al-Garni MA (2013) Inversion of residual gravity anomalies using neural network. Arab J Geosci 6:1509–1516
26.
go back to reference Calster BV, Timmerman D, Nabney IT, Valentin L, Testa AC, Holsbeke CV, Vergote I, Huffel SV (2008) Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput Appl 17:489–500 Calster BV, Timmerman D, Nabney IT, Valentin L, Testa AC, Holsbeke CV, Vergote I, Huffel SV (2008) Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Comput Appl 17:489–500
28.
go back to reference Hippert HS, Tylor JW (2010) An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Netw 23:386–395 Hippert HS, Tylor JW (2010) An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Netw 23:386–395
33.
go back to reference Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordMATH
34.
go back to reference Nabney IT (2004) Netlab algorithms for pattern recognition. Springer, New YorkMATH Nabney IT (2004) Netlab algorithms for pattern recognition. Springer, New YorkMATH
35.
go back to reference Wang W, Xu Z, Lu W, Zhang X (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neuro Comput 55:643–663 Wang W, Xu Z, Lu W, Zhang X (2003) Determination of the spread parameter in the Gaussian kernel for classification and regression. Neuro Comput 55:643–663
36.
go back to reference Naskar DC, Das LK, Rai MK (2016) Insight into the tectonic and crustal understanding of lessar Himalayas along Purnea-Sevoke transect through geophysical studies. J Ind Geophys Union 20:506–515 Naskar DC, Das LK, Rai MK (2016) Insight into the tectonic and crustal understanding of lessar Himalayas along Purnea-Sevoke transect through geophysical studies. J Ind Geophys Union 20:506–515
37.
go back to reference Verma RK (1991) Geodynamics of the Indian Peninsula and the Indian plate margin. Oxford and IBH Publishing Co. Ltd., New Delhi, p 357. ISBN 978-81-204-0568-4 Verma RK (1991) Geodynamics of the Indian Peninsula and the Indian plate margin. Oxford and IBH Publishing Co. Ltd., New Delhi, p 357. ISBN 978-81-204-0568-4
38.
go back to reference Valdiya KS (1976) Himalayan transverse faults and their parallelism with subsurface structures of north Indian plains. Tectonophysics 32:352–386 Valdiya KS (1976) Himalayan transverse faults and their parallelism with subsurface structures of north Indian plains. Tectonophysics 32:352–386
39.
go back to reference Jade S et al (2007) Estimates of interseismic deformation in northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234 Jade S et al (2007) Estimates of interseismic deformation in northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234
40.
go back to reference Mukul M, Jade S, Ansari K, Matin A (2014) Seismotectonic implications of strike–slip earthquakes in the Darjiling–Sikkim Himalaya. Curr Sci 2(25):198–210 Mukul M, Jade S, Ansari K, Matin A (2014) Seismotectonic implications of strike–slip earthquakes in the Darjiling–Sikkim Himalaya. Curr Sci 2(25):198–210
41.
go back to reference Mishra OP (2014) Intricacies of the Himalayan seismotectonics and seismogenesis: need for integrated research. Curr Sci 106(2):176–187 Mishra OP (2014) Intricacies of the Himalayan seismotectonics and seismogenesis: need for integrated research. Curr Sci 106(2):176–187
42.
go back to reference Bhukta K, Khan PK, Mandal P (2018) Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geosci Front 9:1911–1920 Bhukta K, Khan PK, Mandal P (2018) Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geosci Front 9:1911–1920
43.
go back to reference Agarwal RP, Bhoj R (1992) Evolution of Kosi river fan, India: structural implications and geomorphic significance. Int J Remote Sens 13(10):1891–1901 Agarwal RP, Bhoj R (1992) Evolution of Kosi river fan, India: structural implications and geomorphic significance. Int J Remote Sens 13(10):1891–1901
44.
go back to reference Mohanty WK, Verma AK, Vaccari F, Panza GF (2013) Influence of epicentral distance on local seismic response in Kolkata city, India. J Earth Syst Sci 2:321–338 Mohanty WK, Verma AK, Vaccari F, Panza GF (2013) Influence of epicentral distance on local seismic response in Kolkata city, India. J Earth Syst Sci 2:321–338
45.
go back to reference Gupta H, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25:204–213 Gupta H, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25:204–213
46.
go back to reference Singh DD, Gupta HK (1980) Source dynamics of two great earthquakes of the Indian subcontinent: the Bihar-Nepal earthquake of January 15, 1934 and the earthquake of May 30, 1935. Bull Seismol Soc Am 70(3):757–773 Singh DD, Gupta HK (1980) Source dynamics of two great earthquakes of the Indian subcontinent: the Bihar-Nepal earthquake of January 15, 1934 and the earthquake of May 30, 1935. Bull Seismol Soc Am 70(3):757–773
47.
go back to reference Dasgupta S (1993) In Bihar-Nepal earthquake August 20 1988. Geological Survey of India Special Publication No. 31, pp 60–81 Dasgupta S (1993) In Bihar-Nepal earthquake August 20 1988. Geological Survey of India Special Publication No. 31, pp 60–81
48.
go back to reference Dasgupta S, Pande D, Ganguly Z, Iqbal K, Sanyal K, Venkatraman NV, Sural B, Harendranath L, Mazumder K, Sanyal S, Roy A, Das LK, Misra PS, Gupta HK (2000) Seismotectonic atlas of India and its environs. Geological Survey of India, Bangalore Dasgupta S, Pande D, Ganguly Z, Iqbal K, Sanyal K, Venkatraman NV, Sural B, Harendranath L, Mazumder K, Sanyal S, Roy A, Das LK, Misra PS, Gupta HK (2000) Seismotectonic atlas of India and its environs. Geological Survey of India, Bangalore
49.
go back to reference Dasgupta S, Mukhopadhyay B, Mukhopadhyay M, Nandy DR (2013) Role of transverse tectonics in the Himalayan collision: further evidences from two contemporary earthquakes. J Geol Soc India 81:241–247 Dasgupta S, Mukhopadhyay B, Mukhopadhyay M, Nandy DR (2013) Role of transverse tectonics in the Himalayan collision: further evidences from two contemporary earthquakes. J Geol Soc India 81:241–247
50.
go back to reference Gansser A (1964) Geology of the Himalayas. Interscience Publishers, London, p 289 Gansser A (1964) Geology of the Himalayas. Interscience Publishers, London, p 289
51.
go back to reference Jain V, Sinha R (2005) Response of active tectonics on the alluvial Baghmati river, Himalayan foreland basin, eastern India. Geomorphology 70:339–356 Jain V, Sinha R (2005) Response of active tectonics on the alluvial Baghmati river, Himalayan foreland basin, eastern India. Geomorphology 70:339–356
52.
go back to reference Singh AP, Kumar N, Singh B (2004) Magmatic underplating beneath the Rajmahal Traps: gravity signature and derived 3-D configuration. Earth Plant Sci 113:759–769 Singh AP, Kumar N, Singh B (2004) Magmatic underplating beneath the Rajmahal Traps: gravity signature and derived 3-D configuration. Earth Plant Sci 113:759–769
53.
go back to reference Roy AK, Paine DP, Sett S, Bhattacharya HN (2012) Gravity-magnetic and magneto-telluric surveys in Purnea Onland Basin, India: a case history. In: 9th Biennial international conference and exposition on petroleum geophysics, Hyderabad, p 281 Roy AK, Paine DP, Sett S, Bhattacharya HN (2012) Gravity-magnetic and magneto-telluric surveys in Purnea Onland Basin, India: a case history. In: 9th Biennial international conference and exposition on petroleum geophysics, Hyderabad, p 281
54.
go back to reference Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active tectonic feature in the central part of Himalaya. Tectonophysics 136:255–264 Dasgupta S, Mukhopadhyay M, Nandy DR (1987) Active tectonic feature in the central part of Himalaya. Tectonophysics 136:255–264
56.
go back to reference MacKay DJC (1992) A practical Bayesian framework for back-propagation networks. Neural Comput 4(3):448–472 MacKay DJC (1992) A practical Bayesian framework for back-propagation networks. Neural Comput 4(3):448–472
57.
go back to reference Van der Baan M, Jutten C (2000) Neural networks in geophysical applications. Geophysics 65:1032–1047 Van der Baan M, Jutten C (2000) Neural networks in geophysical applications. Geophysics 65:1032–1047
58.
go back to reference Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194 Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
Metadata
Title
Interface depth modelling of gravity data and altitude variations: a Bayesian neural network approach
Authors
Saumen Maiti
Ch. Ravi Kumar
Prasenjit Sarkar
R. K. Tiwari
Uppala Srinu
Publication date
07-06-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04276-9

Other articles of this Issue 8/2020

Neural Computing and Applications 8/2020 Go to the issue

Premium Partner