Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 13/2019

29-05-2019

Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor

Authors: Farzaneh Shayeganfar, Javad Beheshtian

Published in: Journal of Materials Science: Materials in Electronics | Issue 13/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water through nanochannels of graphene (G) exposes the capillary pressure, calling fundamental understanding and predictive design of water within G nanochannels. Nanoconfinement induces switching behaviors at an atomic level, altering electronic and geometric structures. Herein, we study the single-layer water (SLW) and double-layer water (DLW) on monolayer G and encap-sulated in G layers and explore their diverse interfacial properties using a number of high level first principles calculations. By correlating the stability of adsorption, and interfacial properties such as intermediate pressure, charge transfer, structural deformation, one can decode various synergies in interaction properties of water on G nanocapillars. The external electric field (Eext) enhances polarization of system. More especially, changing the strength of Eext can effectively modulate the bandgap of monolayer G and bilayer graphene (BLG), and correspondingly causes a semimetal-semiconductor transition, i.e. Eg = 0.8 and 0.9 eV respectively. We also provide a comparison of phonon vibrational modes of water and heavy water (D2O) encapsulated within BLG, capturing their mobility as a key factor of separation mechanism. Moreover, we propose a nanocapacitor array of graphene-water-graphene composite, which electrodes has been separated by a water layer as a dielectric film. Nanometre-scale G capillaries open up a pathway to fabricate atomically channels walls for nanofluidic technology and nanocapacitor as a key device in integrated circuits (ICs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H. Li, X. Cheng Zeng, Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayerboron nitride sheets. ACS Nano 3, 2401–2409 (2012)CrossRef H. Li, X. Cheng Zeng, Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayerboron nitride sheets. ACS Nano 3, 2401–2409 (2012)CrossRef
2.
go back to reference R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014)CrossRef R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014)CrossRef
3.
go back to reference J. Abraham, K.S. Vasu et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017)CrossRef J. Abraham, K.S. Vasu et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017)CrossRef
4.
go back to reference P. Sun, F. Zheng, K. Wang, M. Zhong, D. Wu, H. Zhu, Electro- and magneto- modulated ion transport through graphene oxide membranes. Sci. Rep. 4, 6798 (2014)CrossRef P. Sun, F. Zheng, K. Wang, M. Zhong, D. Wu, H. Zhu, Electro- and magneto- modulated ion transport through graphene oxide membranes. Sci. Rep. 4, 6798 (2014)CrossRef
5.
go back to reference R. Song, W. Feng, C.A. Jimenez-Cruz, B. Wang, W. Jiang, Z. Zhigang Wang, R. Ruhong Zhou, Water film inside graphene nanosheets: electron transfer reversal between water and graphene via tight nano-confinement. RSC Adv. 5, 274–280 (2015)CrossRef R. Song, W. Feng, C.A. Jimenez-Cruz, B. Wang, W. Jiang, Z. Zhigang Wang, R. Ruhong Zhou, Water film inside graphene nanosheets: electron transfer reversal between water and graphene via tight nano-confinement. RSC Adv. 5, 274–280 (2015)CrossRef
6.
go back to reference D. Guo, F. Fei Zeng, B. Dkhil, Ferroelectric polymer nanostructures: fabrication, struc- tural characteristics and performance under confinement. J. Nanosci. Nanotechnol. 14, 2086–2100 (2014)CrossRef D. Guo, F. Fei Zeng, B. Dkhil, Ferroelectric polymer nanostructures: fabrication, struc- tural characteristics and performance under confinement. J. Nanosci. Nanotechnol. 14, 2086–2100 (2014)CrossRef
7.
go back to reference J. Xu, S. Wang, G.-J. Nathan Wang, C. Zhu, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)CrossRef J. Xu, S. Wang, G.-J. Nathan Wang, C. Zhu, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)CrossRef
8.
go back to reference K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotube. Nat. Nanotechnol. 12, 267–273 (2017)CrossRef K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotube. Nat. Nanotechnol. 12, 267–273 (2017)CrossRef
9.
go back to reference B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016)CrossRef B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016)CrossRef
10.
go back to reference M.J. Shultz, T.H. Vu, B. Meyer, P. Bisson, Water: a responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012)CrossRef M.J. Shultz, T.H. Vu, B. Meyer, P. Bisson, Water: a responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012)CrossRef
11.
go back to reference K. Takahashi, Z.C. Kramer, V. Vaida, R.T. Skodje, Vibrational overtone induced elimina- tion reactions within hydrogen-bonded molecular clusters: the dynamics of water catalyzed reactions in CH2FOH·(H2O). Phys. Chem. Chem. Phys. 9, 3864–3871 (2007)CrossRef K. Takahashi, Z.C. Kramer, V. Vaida, R.T. Skodje, Vibrational overtone induced elimina- tion reactions within hydrogen-bonded molecular clusters: the dynamics of water catalyzed reactions in CH2FOH·(H2O). Phys. Chem. Chem. Phys. 9, 3864–3871 (2007)CrossRef
12.
go back to reference V. Vaida, H.G. Kjaergaard, P.E. Hintze, D.J. Donaldson, Photolysis of sulfuric acid vapor by visible solar radiation. Science 299, 15661568 (2003)CrossRef V. Vaida, H.G. Kjaergaard, P.E. Hintze, D.J. Donaldson, Photolysis of sulfuric acid vapor by visible solar radiation. Science 299, 15661568 (2003)CrossRef
13.
go back to reference N. Sakhavand, P. Muthuramalingam, R. Shahsavari, Toughness governs the rupture of the interfacial h-bond assemblies at a critical length scale in hybrid materials. Langmuir 29(25), 8154–8163 (2013)CrossRef N. Sakhavand, P. Muthuramalingam, R. Shahsavari, Toughness governs the rupture of the interfacial h-bond assemblies at a critical length scale in hybrid materials. Langmuir 29(25), 8154–8163 (2013)CrossRef
14.
go back to reference M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene. Nat. Mat. 15, 66–71 (2015)CrossRef M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene. Nat. Mat. 15, 66–71 (2015)CrossRef
15.
go back to reference Y. Zhu, F. Wang, J. Jaeil Bai, X.C. Zeng, H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 9(3), 3254–3264 (2015)CrossRef Y. Zhu, F. Wang, J. Jaeil Bai, X.C. Zeng, H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 9(3), 3254–3264 (2015)CrossRef
16.
go back to reference G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015)CrossRef G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015)CrossRef
17.
go back to reference P. Banerjee, I. Perez, L. Henn-Lecordier, S. Bok Lee, G.W. Rubloff, Nanotubular metalinsulatormetal capacitor arrays for energy storage. Nat. Nano 4, 292–296 (2009)CrossRef P. Banerjee, I. Perez, L. Henn-Lecordier, S. Bok Lee, G.W. Rubloff, Nanotubular metalinsulatormetal capacitor arrays for energy storage. Nat. Nano 4, 292–296 (2009)CrossRef
18.
go back to reference H. Zareie, S.W. Morgan, M. Moghaddam, A.I. Maaroof, M.B. Cortie, M.R. Phillips, Nanocapacitive circuit elements. ACS Nano 2(8), 1615–1619 (2008)CrossRef H. Zareie, S.W. Morgan, M. Moghaddam, A.I. Maaroof, M.B. Cortie, M.R. Phillips, Nanocapacitive circuit elements. ACS Nano 2(8), 1615–1619 (2008)CrossRef
19.
go back to reference F. Parhizgar, A. Qauimzadeh, R. Asgari, Quantum capacitance of double-layer graphene. Phys. Rev. B 96, 075447 (2017)CrossRef F. Parhizgar, A. Qauimzadeh, R. Asgari, Quantum capacitance of double-layer graphene. Phys. Rev. B 96, 075447 (2017)CrossRef
20.
go back to reference J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009)CrossRef J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009)CrossRef
21.
go back to reference F. Giannazzo, S. Sonde, V. Raineri, R. Rimini, Screening length and quantum capac- itance in graphene by scanning probe microscopy. Nano Lett. 9, 23 (2009)CrossRef F. Giannazzo, S. Sonde, V. Raineri, R. Rimini, Screening length and quantum capac- itance in graphene by scanning probe microscopy. Nano Lett. 9, 23 (2009)CrossRef
22.
go back to reference H. Xu, Z. Zhang, L.-M. Penga, Measurements and microscopic model of quantum Ca-pacitance in graphene. Appl. Phys. Lett. 98, 133122 (2011)CrossRef H. Xu, Z. Zhang, L.-M. Penga, Measurements and microscopic model of quantum Ca-pacitance in graphene. Appl. Phys. Lett. 98, 133122 (2011)CrossRef
23.
go back to reference H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014)CrossRef H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014)CrossRef
24.
go back to reference A.B. Trabelsi, F.V. Kusmartsev, D.M. Forrester, O.E. Kumartseva, M.B. Gaifullin, P. Cropper, M. Oueslati, The emergence of quantum capacitance in epitaxial graphene. J. Mater. Chem. C 4, 5829 (2016)CrossRef A.B. Trabelsi, F.V. Kusmartsev, D.M. Forrester, O.E. Kumartseva, M.B. Gaifullin, P. Cropper, M. Oueslati, The emergence of quantum capacitance in epitaxial graphene. J. Mater. Chem. C 4, 5829 (2016)CrossRef
25.
go back to reference V. Panchal, C.E. Giusca, A. Lartsev, N.A. Martin, N. Cassidy, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Atmospheric doping effects in epitaxial graphene: corre-lation of local and global electrical studies. Mater 3, 15006 (2016) V. Panchal, C.E. Giusca, A. Lartsev, N.A. Martin, N. Cassidy, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Atmospheric doping effects in epitaxial graphene: corre-lation of local and global electrical studies. Mater 3, 15006 (2016)
26.
go back to reference A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. Durso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 30, 8598–8606 (2014)CrossRef A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. Durso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 30, 8598–8606 (2014)CrossRef
27.
go back to reference P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepkov, K. Afrov, M. Otyepka, Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6372–6377 (2013)CrossRef P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepkov, K. Afrov, M. Otyepka, Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6372–6377 (2013)CrossRef
28.
go back to reference A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, Understanding the intrinsic water wettability of graphite. Carbon 74, 218225 (2014)CrossRef A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, Understanding the intrinsic water wettability of graphite. Carbon 74, 218225 (2014)CrossRef
29.
go back to reference M. Munz, C.E. Giusca, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Thickness- dependent hydrophobicity of epitaxial graphene. ACS Nano 9, 8401–8411 (2015)CrossRef M. Munz, C.E. Giusca, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Thickness- dependent hydrophobicity of epitaxial graphene. ACS Nano 9, 8401–8411 (2015)CrossRef
30.
go back to reference A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017)CrossRef A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017)CrossRef
31.
go back to reference P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRef P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRef
32.
go back to reference W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1994)CrossRef W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1994)CrossRef
33.
34.
go back to reference G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)CrossRef G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)CrossRef
35.
go back to reference Kresse, G. (Ph.D. thesis), Ab initio Molekular Dynamik fur flussige Metalle, Technische Uni-versitt Wien, (1993) Kresse, G. (Ph.D. thesis), Ab initio Molekular Dynamik fur flussige Metalle, Technische Uni-versitt Wien, (1993)
36.
go back to reference G. Kresse, J. Furthmuller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRef G. Kresse, J. Furthmuller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRef
37.
go back to reference G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calcu-lations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRef G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calcu-lations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRef
39.
go back to reference C.-S. Liu, G. Pilania, C. Wang, R. Ramprasad, How critical are the van der Waals interactions in polymer crystals? J. Phys. Chem. A 116, 9347 (2012)CrossRef C.-S. Liu, G. Pilania, C. Wang, R. Ramprasad, How critical are the van der Waals interactions in polymer crystals? J. Phys. Chem. A 116, 9347 (2012)CrossRef
40.
go back to reference K. Lee, D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010)CrossRef K. Lee, D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010)CrossRef
41.
go back to reference E.D. Murray, K. Lee, D.C. Langreth, Investigation of exchange energy density func-tional accuracy for interacting molecules. J. Chem. Theor. Comput. 5, 2754 (2009)CrossRef E.D. Murray, K. Lee, D.C. Langreth, Investigation of exchange energy density func-tional accuracy for interacting molecules. J. Chem. Theor. Comput. 5, 2754 (2009)CrossRef
42.
go back to reference J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, Berke-leyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comp. Phys. Commun. 183, 1269–1289 (2012)CrossRef J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, Berke-leyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comp. Phys. Commun. 183, 1269–1289 (2012)CrossRef
43.
go back to reference S. Sharifzadeh, P. Darancet, L. Kronik, J.B. Neaton, Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197 (2013)CrossRef S. Sharifzadeh, P. Darancet, L. Kronik, J.B. Neaton, Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197 (2013)CrossRef
44.
go back to reference M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)CrossRef M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)CrossRef
45.
go back to reference F. Shayeganfar, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Monolayer alkali metal oxide: MgO, CaO, MnO, NiO. Phys. Rev. B 99, 523–532 (2017) F. Shayeganfar, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Monolayer alkali metal oxide: MgO, CaO, MnO, NiO. Phys. Rev. B 99, 523–532 (2017)
46.
go back to reference F. Shayeganfar, J. Javad Beheshtiyan, R. Shahsavari, Electro- and opto-mutable prop-erties of mgo nanoclusters adsorbed on mono- and double-layer graphene. Nanoscale 9(12), 4205–4218 (2017)CrossRef F. Shayeganfar, J. Javad Beheshtiyan, R. Shahsavari, Electro- and opto-mutable prop-erties of mgo nanoclusters adsorbed on mono- and double-layer graphene. Nanoscale 9(12), 4205–4218 (2017)CrossRef
47.
go back to reference F. Shayeganfar, A. Rochefort, Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30, 9707–9716 (2014)CrossRef F. Shayeganfar, A. Rochefort, Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30, 9707–9716 (2014)CrossRef
48.
go back to reference F. Shayeganfar, A. Rochefort, Tuning the electronic properties of a boron-doped Si(111) surface by self-assembling of trimesic acid. J. Phys. Chem. C 119(27), 1574215748 (2015)CrossRef F. Shayeganfar, A. Rochefort, Tuning the electronic properties of a boron-doped Si(111) surface by self-assembling of trimesic acid. J. Phys. Chem. C 119(27), 1574215748 (2015)CrossRef
49.
go back to reference C. Melios, M. Winters, W. Strupinski, V. Panchal, C.E. Giusca, K.D.G. Imalka Jayawardena, N. Rorsman, S.R.P. Silva, O. Kazakova, Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale 9, 34403448 (2017)CrossRef C. Melios, M. Winters, W. Strupinski, V. Panchal, C.E. Giusca, K.D.G. Imalka Jayawardena, N. Rorsman, S.R.P. Silva, O. Kazakova, Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale 9, 34403448 (2017)CrossRef
50.
go back to reference J. Moser, A. Verdaguer, D. Jimnez, A. Barreiro, A. Bachtold, The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 92, 123507 (2008)CrossRef J. Moser, A. Verdaguer, D. Jimnez, A. Barreiro, A. Bachtold, The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 92, 123507 (2008)CrossRef
51.
go back to reference C. Park, J. Junga Ryou, S. Hong, B.G. Sumpter, G. Kim, M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field. Phys. Rev. Lett. 115, 015502 (2015)CrossRef C. Park, J. Junga Ryou, S. Hong, B.G. Sumpter, G. Kim, M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field. Phys. Rev. Lett. 115, 015502 (2015)CrossRef
52.
go back to reference Y.R. Tang, Y. Zhang, J.X. Cao, Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst. J. Appl. Phys. 119, 195303 (2016)CrossRef Y.R. Tang, Y. Zhang, J.X. Cao, Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst. J. Appl. Phys. 119, 195303 (2016)CrossRef
53.
go back to reference S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010)CrossRef S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010)CrossRef
54.
go back to reference M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 6268 (2016)CrossRef M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 6268 (2016)CrossRef
55.
go back to reference M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I.V. Grigorieva, A.K. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017)CrossRef M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I.V. Grigorieva, A.K. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017)CrossRef
56.
go back to reference A.J.H. McGaughey, M.I. Husseinz, E.S. Landry, M. Kaviany, G.M. Hulbert, Phys. Rev. B 74, 104304 (2006)CrossRef A.J.H. McGaughey, M.I. Husseinz, E.S. Landry, M. Kaviany, G.M. Hulbert, Phys. Rev. B 74, 104304 (2006)CrossRef
57.
go back to reference F. Shayeganfar, R. Shahsavari, Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab initio calculations and elasticity theory. Car-bon 99, 523–532 (2016) F. Shayeganfar, R. Shahsavari, Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab initio calculations and elasticity theory. Car-bon 99, 523–532 (2016)
58.
go back to reference B. Renker, Physics and Chemistry of Ice (University of Toronto Press, Toronto, 1973), p. 82 B. Renker, Physics and Chemistry of Ice (University of Toronto Press, Toronto, 1973), p. 82
59.
go back to reference D.J. Rose, Mobility of hydrogen and deuterium positive ions in their parent gases. J. Appl. Phys. 31, 643 (1960)CrossRef D.J. Rose, Mobility of hydrogen and deuterium positive ions in their parent gases. J. Appl. Phys. 31, 643 (1960)CrossRef
60.
go back to reference G. Shi, Y. Hanlumyuang, Z. Liu, Y. Gong, W. Gao, B. Li, J. Kono, J. Lou, R. Vajtai, P. Sharma, P.M. Ajayan, Boron nitridegraphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett. 14, 1739–1744 (2014)CrossRef G. Shi, Y. Hanlumyuang, Z. Liu, Y. Gong, W. Gao, B. Li, J. Kono, J. Lou, R. Vajtai, P. Sharma, P.M. Ajayan, Boron nitridegraphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett. 14, 1739–1744 (2014)CrossRef
61.
go back to reference L. Chkhartishvili, M. Beridze, S. Dekanosidze, R. Esiava, I. Kalandadze, N. Mamisashvili, G. Tabatadze, How to calculate nanocapacitance. American Journal of Nano Research and Applications 5(3–1), 9–12 (2017) L. Chkhartishvili, M. Beridze, S. Dekanosidze, R. Esiava, I. Kalandadze, N. Mamisashvili, G. Tabatadze, How to calculate nanocapacitance. American Journal of Nano Research and Applications 5(3–1), 9–12 (2017)
62.
go back to reference L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in a two-dimensional electron system. Science 332(6031), 825828 (2011)CrossRef L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in a two-dimensional electron system. Science 332(6031), 825828 (2011)CrossRef
63.
go back to reference W. Meevasana, P.D.C. King, R.H. He, S.K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, Z.X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10(2), 114118 (2011)CrossRef W. Meevasana, P.D.C. King, R.H. He, S.K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, Z.X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10(2), 114118 (2011)CrossRef
64.
go back to reference Z. Liu, Y.J. Zhan, G. Shi, S. Moldovan, M. Gharbi, L. Song, L.L. Ma, W. Gao, J.Q. Huang, R. Vajtai, F. Banhart, P. Sharma, J. Lou, P.M. Ajayan, Anomalous high capacitance in a coaxial single nanowire capacitor. Nat. Commun. 3, 879 (2012)CrossRef Z. Liu, Y.J. Zhan, G. Shi, S. Moldovan, M. Gharbi, L. Song, L.L. Ma, W. Gao, J.Q. Huang, R. Vajtai, F. Banhart, P. Sharma, J. Lou, P.M. Ajayan, Anomalous high capacitance in a coaxial single nanowire capacitor. Nat. Commun. 3, 879 (2012)CrossRef
65.
go back to reference S. Droscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, T. Ihn, Quantum capacitance and density of states of graphene. T. Appl. Phys. Lett. 96(15), 151105 (2010)CrossRef S. Droscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, T. Ihn, Quantum capacitance and density of states of graphene. T. Appl. Phys. Lett. 96(15), 151105 (2010)CrossRef
66.
go back to reference M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 16 (2002)CrossRef M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 16 (2002)CrossRef
Metadata
Title
Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor
Authors
Farzaneh Shayeganfar
Javad Beheshtian
Publication date
29-05-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 13/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01547-y

Other articles of this Issue 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Go to the issue