Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

29.05.2019

Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor

verfasst von: Farzaneh Shayeganfar, Javad Beheshtian

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water through nanochannels of graphene (G) exposes the capillary pressure, calling fundamental understanding and predictive design of water within G nanochannels. Nanoconfinement induces switching behaviors at an atomic level, altering electronic and geometric structures. Herein, we study the single-layer water (SLW) and double-layer water (DLW) on monolayer G and encap-sulated in G layers and explore their diverse interfacial properties using a number of high level first principles calculations. By correlating the stability of adsorption, and interfacial properties such as intermediate pressure, charge transfer, structural deformation, one can decode various synergies in interaction properties of water on G nanocapillars. The external electric field (Eext) enhances polarization of system. More especially, changing the strength of Eext can effectively modulate the bandgap of monolayer G and bilayer graphene (BLG), and correspondingly causes a semimetal-semiconductor transition, i.e. Eg = 0.8 and 0.9 eV respectively. We also provide a comparison of phonon vibrational modes of water and heavy water (D2O) encapsulated within BLG, capturing their mobility as a key factor of separation mechanism. Moreover, we propose a nanocapacitor array of graphene-water-graphene composite, which electrodes has been separated by a water layer as a dielectric film. Nanometre-scale G capillaries open up a pathway to fabricate atomically channels walls for nanofluidic technology and nanocapacitor as a key device in integrated circuits (ICs).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H. Li, X. Cheng Zeng, Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayerboron nitride sheets. ACS Nano 3, 2401–2409 (2012)CrossRef H. Li, X. Cheng Zeng, Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayerboron nitride sheets. ACS Nano 3, 2401–2409 (2012)CrossRef
2.
Zurück zum Zitat R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014)CrossRef R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752 (2014)CrossRef
3.
Zurück zum Zitat J. Abraham, K.S. Vasu et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017)CrossRef J. Abraham, K.S. Vasu et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017)CrossRef
4.
Zurück zum Zitat P. Sun, F. Zheng, K. Wang, M. Zhong, D. Wu, H. Zhu, Electro- and magneto- modulated ion transport through graphene oxide membranes. Sci. Rep. 4, 6798 (2014)CrossRef P. Sun, F. Zheng, K. Wang, M. Zhong, D. Wu, H. Zhu, Electro- and magneto- modulated ion transport through graphene oxide membranes. Sci. Rep. 4, 6798 (2014)CrossRef
5.
Zurück zum Zitat R. Song, W. Feng, C.A. Jimenez-Cruz, B. Wang, W. Jiang, Z. Zhigang Wang, R. Ruhong Zhou, Water film inside graphene nanosheets: electron transfer reversal between water and graphene via tight nano-confinement. RSC Adv. 5, 274–280 (2015)CrossRef R. Song, W. Feng, C.A. Jimenez-Cruz, B. Wang, W. Jiang, Z. Zhigang Wang, R. Ruhong Zhou, Water film inside graphene nanosheets: electron transfer reversal between water and graphene via tight nano-confinement. RSC Adv. 5, 274–280 (2015)CrossRef
6.
Zurück zum Zitat D. Guo, F. Fei Zeng, B. Dkhil, Ferroelectric polymer nanostructures: fabrication, struc- tural characteristics and performance under confinement. J. Nanosci. Nanotechnol. 14, 2086–2100 (2014)CrossRef D. Guo, F. Fei Zeng, B. Dkhil, Ferroelectric polymer nanostructures: fabrication, struc- tural characteristics and performance under confinement. J. Nanosci. Nanotechnol. 14, 2086–2100 (2014)CrossRef
7.
Zurück zum Zitat J. Xu, S. Wang, G.-J. Nathan Wang, C. Zhu, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)CrossRef J. Xu, S. Wang, G.-J. Nathan Wang, C. Zhu, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)CrossRef
8.
Zurück zum Zitat K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotube. Nat. Nanotechnol. 12, 267–273 (2017)CrossRef K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotube. Nat. Nanotechnol. 12, 267–273 (2017)CrossRef
9.
Zurück zum Zitat B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016)CrossRef B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016)CrossRef
10.
Zurück zum Zitat M.J. Shultz, T.H. Vu, B. Meyer, P. Bisson, Water: a responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012)CrossRef M.J. Shultz, T.H. Vu, B. Meyer, P. Bisson, Water: a responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012)CrossRef
11.
Zurück zum Zitat K. Takahashi, Z.C. Kramer, V. Vaida, R.T. Skodje, Vibrational overtone induced elimina- tion reactions within hydrogen-bonded molecular clusters: the dynamics of water catalyzed reactions in CH2FOH·(H2O). Phys. Chem. Chem. Phys. 9, 3864–3871 (2007)CrossRef K. Takahashi, Z.C. Kramer, V. Vaida, R.T. Skodje, Vibrational overtone induced elimina- tion reactions within hydrogen-bonded molecular clusters: the dynamics of water catalyzed reactions in CH2FOH·(H2O). Phys. Chem. Chem. Phys. 9, 3864–3871 (2007)CrossRef
12.
Zurück zum Zitat V. Vaida, H.G. Kjaergaard, P.E. Hintze, D.J. Donaldson, Photolysis of sulfuric acid vapor by visible solar radiation. Science 299, 15661568 (2003)CrossRef V. Vaida, H.G. Kjaergaard, P.E. Hintze, D.J. Donaldson, Photolysis of sulfuric acid vapor by visible solar radiation. Science 299, 15661568 (2003)CrossRef
13.
Zurück zum Zitat N. Sakhavand, P. Muthuramalingam, R. Shahsavari, Toughness governs the rupture of the interfacial h-bond assemblies at a critical length scale in hybrid materials. Langmuir 29(25), 8154–8163 (2013)CrossRef N. Sakhavand, P. Muthuramalingam, R. Shahsavari, Toughness governs the rupture of the interfacial h-bond assemblies at a critical length scale in hybrid materials. Langmuir 29(25), 8154–8163 (2013)CrossRef
14.
Zurück zum Zitat M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene. Nat. Mat. 15, 66–71 (2015)CrossRef M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene. Nat. Mat. 15, 66–71 (2015)CrossRef
15.
Zurück zum Zitat Y. Zhu, F. Wang, J. Jaeil Bai, X.C. Zeng, H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 9(3), 3254–3264 (2015)CrossRef Y. Zhu, F. Wang, J. Jaeil Bai, X.C. Zeng, H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano 9(3), 3254–3264 (2015)CrossRef
16.
Zurück zum Zitat G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015)CrossRef G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015)CrossRef
17.
Zurück zum Zitat P. Banerjee, I. Perez, L. Henn-Lecordier, S. Bok Lee, G.W. Rubloff, Nanotubular metalinsulatormetal capacitor arrays for energy storage. Nat. Nano 4, 292–296 (2009)CrossRef P. Banerjee, I. Perez, L. Henn-Lecordier, S. Bok Lee, G.W. Rubloff, Nanotubular metalinsulatormetal capacitor arrays for energy storage. Nat. Nano 4, 292–296 (2009)CrossRef
18.
Zurück zum Zitat H. Zareie, S.W. Morgan, M. Moghaddam, A.I. Maaroof, M.B. Cortie, M.R. Phillips, Nanocapacitive circuit elements. ACS Nano 2(8), 1615–1619 (2008)CrossRef H. Zareie, S.W. Morgan, M. Moghaddam, A.I. Maaroof, M.B. Cortie, M.R. Phillips, Nanocapacitive circuit elements. ACS Nano 2(8), 1615–1619 (2008)CrossRef
19.
Zurück zum Zitat F. Parhizgar, A. Qauimzadeh, R. Asgari, Quantum capacitance of double-layer graphene. Phys. Rev. B 96, 075447 (2017)CrossRef F. Parhizgar, A. Qauimzadeh, R. Asgari, Quantum capacitance of double-layer graphene. Phys. Rev. B 96, 075447 (2017)CrossRef
20.
Zurück zum Zitat J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009)CrossRef J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009)CrossRef
21.
Zurück zum Zitat F. Giannazzo, S. Sonde, V. Raineri, R. Rimini, Screening length and quantum capac- itance in graphene by scanning probe microscopy. Nano Lett. 9, 23 (2009)CrossRef F. Giannazzo, S. Sonde, V. Raineri, R. Rimini, Screening length and quantum capac- itance in graphene by scanning probe microscopy. Nano Lett. 9, 23 (2009)CrossRef
22.
Zurück zum Zitat H. Xu, Z. Zhang, L.-M. Penga, Measurements and microscopic model of quantum Ca-pacitance in graphene. Appl. Phys. Lett. 98, 133122 (2011)CrossRef H. Xu, Z. Zhang, L.-M. Penga, Measurements and microscopic model of quantum Ca-pacitance in graphene. Appl. Phys. Lett. 98, 133122 (2011)CrossRef
23.
Zurück zum Zitat H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014)CrossRef H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L.L. Zhang, A.H. MacDonald, R.S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 5, 3317 (2014)CrossRef
24.
Zurück zum Zitat A.B. Trabelsi, F.V. Kusmartsev, D.M. Forrester, O.E. Kumartseva, M.B. Gaifullin, P. Cropper, M. Oueslati, The emergence of quantum capacitance in epitaxial graphene. J. Mater. Chem. C 4, 5829 (2016)CrossRef A.B. Trabelsi, F.V. Kusmartsev, D.M. Forrester, O.E. Kumartseva, M.B. Gaifullin, P. Cropper, M. Oueslati, The emergence of quantum capacitance in epitaxial graphene. J. Mater. Chem. C 4, 5829 (2016)CrossRef
25.
Zurück zum Zitat V. Panchal, C.E. Giusca, A. Lartsev, N.A. Martin, N. Cassidy, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Atmospheric doping effects in epitaxial graphene: corre-lation of local and global electrical studies. Mater 3, 15006 (2016) V. Panchal, C.E. Giusca, A. Lartsev, N.A. Martin, N. Cassidy, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Atmospheric doping effects in epitaxial graphene: corre-lation of local and global electrical studies. Mater 3, 15006 (2016)
26.
Zurück zum Zitat A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. Durso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 30, 8598–8606 (2014)CrossRef A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. Durso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements. Langmuir 30, 8598–8606 (2014)CrossRef
27.
Zurück zum Zitat P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepkov, K. Afrov, M. Otyepka, Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6372–6377 (2013)CrossRef P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepkov, K. Afrov, M. Otyepka, Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6372–6377 (2013)CrossRef
28.
Zurück zum Zitat A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, Understanding the intrinsic water wettability of graphite. Carbon 74, 218225 (2014)CrossRef A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, L. Li, Understanding the intrinsic water wettability of graphite. Carbon 74, 218225 (2014)CrossRef
29.
Zurück zum Zitat M. Munz, C.E. Giusca, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Thickness- dependent hydrophobicity of epitaxial graphene. ACS Nano 9, 8401–8411 (2015)CrossRef M. Munz, C.E. Giusca, R.L. Myers-Ward, D.K. Gaskill, O. Kazakova, Thickness- dependent hydrophobicity of epitaxial graphene. ACS Nano 9, 8401–8411 (2015)CrossRef
30.
Zurück zum Zitat A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017)CrossRef A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017)CrossRef
31.
Zurück zum Zitat P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRef P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)CrossRef
32.
Zurück zum Zitat W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1994)CrossRef W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1994)CrossRef
33.
Zurück zum Zitat P.E. Blchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)CrossRef P.E. Blchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)CrossRef
34.
Zurück zum Zitat G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)CrossRef G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)CrossRef
35.
Zurück zum Zitat Kresse, G. (Ph.D. thesis), Ab initio Molekular Dynamik fur flussige Metalle, Technische Uni-versitt Wien, (1993) Kresse, G. (Ph.D. thesis), Ab initio Molekular Dynamik fur flussige Metalle, Technische Uni-versitt Wien, (1993)
36.
Zurück zum Zitat G. Kresse, J. Furthmuller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRef G. Kresse, J. Furthmuller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRef
37.
Zurück zum Zitat G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calcu-lations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRef G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calcu-lations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRef
39.
Zurück zum Zitat C.-S. Liu, G. Pilania, C. Wang, R. Ramprasad, How critical are the van der Waals interactions in polymer crystals? J. Phys. Chem. A 116, 9347 (2012)CrossRef C.-S. Liu, G. Pilania, C. Wang, R. Ramprasad, How critical are the van der Waals interactions in polymer crystals? J. Phys. Chem. A 116, 9347 (2012)CrossRef
40.
Zurück zum Zitat K. Lee, D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010)CrossRef K. Lee, D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101(R) (2010)CrossRef
41.
Zurück zum Zitat E.D. Murray, K. Lee, D.C. Langreth, Investigation of exchange energy density func-tional accuracy for interacting molecules. J. Chem. Theor. Comput. 5, 2754 (2009)CrossRef E.D. Murray, K. Lee, D.C. Langreth, Investigation of exchange energy density func-tional accuracy for interacting molecules. J. Chem. Theor. Comput. 5, 2754 (2009)CrossRef
42.
Zurück zum Zitat J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, Berke-leyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comp. Phys. Commun. 183, 1269–1289 (2012)CrossRef J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, Berke-leyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comp. Phys. Commun. 183, 1269–1289 (2012)CrossRef
43.
Zurück zum Zitat S. Sharifzadeh, P. Darancet, L. Kronik, J.B. Neaton, Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197 (2013)CrossRef S. Sharifzadeh, P. Darancet, L. Kronik, J.B. Neaton, Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197 (2013)CrossRef
44.
Zurück zum Zitat M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)CrossRef M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986)CrossRef
45.
Zurück zum Zitat F. Shayeganfar, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Monolayer alkali metal oxide: MgO, CaO, MnO, NiO. Phys. Rev. B 99, 523–532 (2017) F. Shayeganfar, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Monolayer alkali metal oxide: MgO, CaO, MnO, NiO. Phys. Rev. B 99, 523–532 (2017)
46.
Zurück zum Zitat F. Shayeganfar, J. Javad Beheshtiyan, R. Shahsavari, Electro- and opto-mutable prop-erties of mgo nanoclusters adsorbed on mono- and double-layer graphene. Nanoscale 9(12), 4205–4218 (2017)CrossRef F. Shayeganfar, J. Javad Beheshtiyan, R. Shahsavari, Electro- and opto-mutable prop-erties of mgo nanoclusters adsorbed on mono- and double-layer graphene. Nanoscale 9(12), 4205–4218 (2017)CrossRef
47.
Zurück zum Zitat F. Shayeganfar, A. Rochefort, Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30, 9707–9716 (2014)CrossRef F. Shayeganfar, A. Rochefort, Electronic properties of self-assembled trimesic acid monolayer on graphene. Langmuir 30, 9707–9716 (2014)CrossRef
48.
Zurück zum Zitat F. Shayeganfar, A. Rochefort, Tuning the electronic properties of a boron-doped Si(111) surface by self-assembling of trimesic acid. J. Phys. Chem. C 119(27), 1574215748 (2015)CrossRef F. Shayeganfar, A. Rochefort, Tuning the electronic properties of a boron-doped Si(111) surface by self-assembling of trimesic acid. J. Phys. Chem. C 119(27), 1574215748 (2015)CrossRef
49.
Zurück zum Zitat C. Melios, M. Winters, W. Strupinski, V. Panchal, C.E. Giusca, K.D.G. Imalka Jayawardena, N. Rorsman, S.R.P. Silva, O. Kazakova, Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale 9, 34403448 (2017)CrossRef C. Melios, M. Winters, W. Strupinski, V. Panchal, C.E. Giusca, K.D.G. Imalka Jayawardena, N. Rorsman, S.R.P. Silva, O. Kazakova, Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale 9, 34403448 (2017)CrossRef
50.
Zurück zum Zitat J. Moser, A. Verdaguer, D. Jimnez, A. Barreiro, A. Bachtold, The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 92, 123507 (2008)CrossRef J. Moser, A. Verdaguer, D. Jimnez, A. Barreiro, A. Bachtold, The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 92, 123507 (2008)CrossRef
51.
Zurück zum Zitat C. Park, J. Junga Ryou, S. Hong, B.G. Sumpter, G. Kim, M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field. Phys. Rev. Lett. 115, 015502 (2015)CrossRef C. Park, J. Junga Ryou, S. Hong, B.G. Sumpter, G. Kim, M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field. Phys. Rev. Lett. 115, 015502 (2015)CrossRef
52.
Zurück zum Zitat Y.R. Tang, Y. Zhang, J.X. Cao, Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst. J. Appl. Phys. 119, 195303 (2016)CrossRef Y.R. Tang, Y. Zhang, J.X. Cao, Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst. J. Appl. Phys. 119, 195303 (2016)CrossRef
53.
Zurück zum Zitat S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010)CrossRef S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010)CrossRef
54.
Zurück zum Zitat M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 6268 (2016)CrossRef M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 6268 (2016)CrossRef
55.
Zurück zum Zitat M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I.V. Grigorieva, A.K. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017)CrossRef M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I.V. Grigorieva, A.K. Geim, Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nat. Commun. 8, 15215 (2017)CrossRef
56.
Zurück zum Zitat A.J.H. McGaughey, M.I. Husseinz, E.S. Landry, M. Kaviany, G.M. Hulbert, Phys. Rev. B 74, 104304 (2006)CrossRef A.J.H. McGaughey, M.I. Husseinz, E.S. Landry, M. Kaviany, G.M. Hulbert, Phys. Rev. B 74, 104304 (2006)CrossRef
57.
Zurück zum Zitat F. Shayeganfar, R. Shahsavari, Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab initio calculations and elasticity theory. Car-bon 99, 523–532 (2016) F. Shayeganfar, R. Shahsavari, Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab initio calculations and elasticity theory. Car-bon 99, 523–532 (2016)
58.
Zurück zum Zitat B. Renker, Physics and Chemistry of Ice (University of Toronto Press, Toronto, 1973), p. 82 B. Renker, Physics and Chemistry of Ice (University of Toronto Press, Toronto, 1973), p. 82
59.
Zurück zum Zitat D.J. Rose, Mobility of hydrogen and deuterium positive ions in their parent gases. J. Appl. Phys. 31, 643 (1960)CrossRef D.J. Rose, Mobility of hydrogen and deuterium positive ions in their parent gases. J. Appl. Phys. 31, 643 (1960)CrossRef
60.
Zurück zum Zitat G. Shi, Y. Hanlumyuang, Z. Liu, Y. Gong, W. Gao, B. Li, J. Kono, J. Lou, R. Vajtai, P. Sharma, P.M. Ajayan, Boron nitridegraphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett. 14, 1739–1744 (2014)CrossRef G. Shi, Y. Hanlumyuang, Z. Liu, Y. Gong, W. Gao, B. Li, J. Kono, J. Lou, R. Vajtai, P. Sharma, P.M. Ajayan, Boron nitridegraphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance. Nano Lett. 14, 1739–1744 (2014)CrossRef
61.
Zurück zum Zitat L. Chkhartishvili, M. Beridze, S. Dekanosidze, R. Esiava, I. Kalandadze, N. Mamisashvili, G. Tabatadze, How to calculate nanocapacitance. American Journal of Nano Research and Applications 5(3–1), 9–12 (2017) L. Chkhartishvili, M. Beridze, S. Dekanosidze, R. Esiava, I. Kalandadze, N. Mamisashvili, G. Tabatadze, How to calculate nanocapacitance. American Journal of Nano Research and Applications 5(3–1), 9–12 (2017)
62.
Zurück zum Zitat L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in a two-dimensional electron system. Science 332(6031), 825828 (2011)CrossRef L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in a two-dimensional electron system. Science 332(6031), 825828 (2011)CrossRef
63.
Zurück zum Zitat W. Meevasana, P.D.C. King, R.H. He, S.K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, Z.X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10(2), 114118 (2011)CrossRef W. Meevasana, P.D.C. King, R.H. He, S.K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, Z.X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10(2), 114118 (2011)CrossRef
64.
Zurück zum Zitat Z. Liu, Y.J. Zhan, G. Shi, S. Moldovan, M. Gharbi, L. Song, L.L. Ma, W. Gao, J.Q. Huang, R. Vajtai, F. Banhart, P. Sharma, J. Lou, P.M. Ajayan, Anomalous high capacitance in a coaxial single nanowire capacitor. Nat. Commun. 3, 879 (2012)CrossRef Z. Liu, Y.J. Zhan, G. Shi, S. Moldovan, M. Gharbi, L. Song, L.L. Ma, W. Gao, J.Q. Huang, R. Vajtai, F. Banhart, P. Sharma, J. Lou, P.M. Ajayan, Anomalous high capacitance in a coaxial single nanowire capacitor. Nat. Commun. 3, 879 (2012)CrossRef
65.
Zurück zum Zitat S. Droscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, T. Ihn, Quantum capacitance and density of states of graphene. T. Appl. Phys. Lett. 96(15), 151105 (2010)CrossRef S. Droscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, T. Ihn, Quantum capacitance and density of states of graphene. T. Appl. Phys. Lett. 96(15), 151105 (2010)CrossRef
66.
Zurück zum Zitat M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 16 (2002)CrossRef M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 16 (2002)CrossRef
Metadaten
Titel
Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor
verfasst von
Farzaneh Shayeganfar
Javad Beheshtian
Publikationsdatum
29.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01547-y

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt