Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

03.06.2019

High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound

verfasst von: A. Benali, M. Bejar, E. Dhahri, M. P. F. Graça, M. A. Valente, A. Radwan

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of 5% magnesium doping on the structural, magnetic and gas sensing properties of La0.8Ca0.1Pb0.1Fe0.95Mg0.05O3 (LCPFMO) has been investigated. The nanosize compound was prepared by the Sol–Gel method, using the citric acid route. The Structural study confirms that this compound crystallizes in the orthorhombic structure with the Pbnm space group. From the magnetic measurements, we were able to show that the effect of the Mg doping is to increase the saturated magnetization and to decrease the Ferromagnetic–Paramagnetic magnetic phase transition temperature (TC). A theoretical modulation was derived in order to confirm the domination of the ferromagnetic contribution over the Antiferromagnetic one. The AC-conductivity dependence on both temperature and frequency was studied; the study confirmed the presence of two behaviors; at high-temperature region, it was found to be only temperature dependent, while at low temperatures, it depends on both frequency and temperature parameters. At low temperature, the conduction mechanism is studied according to the NSPT model, where all parameters were discussed. The electrical Sensitivity (S) of the prepared sample to different ethanol gas concentration was investigated, using a broadband dielectric spectroscopy. It was found that 5% of magnesium insertion leads to an improvement in the sensitivity of the LCPFMO sample. This sensitivity was found to be ethanol amount dependent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloy. Compd. 646, 924–931 (2015)CrossRef A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloy. Compd. 646, 924–931 (2015)CrossRef
2.
Zurück zum Zitat T. Hibino, S. Wang, S. Kakimoto, M. Sano, Solid State Ion 127, 89–98 (2000)CrossRef T. Hibino, S. Wang, S. Kakimoto, M. Sano, Solid State Ion 127, 89–98 (2000)CrossRef
3.
Zurück zum Zitat A. Moser, C.T. Rettner, M.E. Best, E.E. Fullerton, D. Weller, M. Parker, IEEE Trans. Magn. 36, 2137–2139 (2000)CrossRef A. Moser, C.T. Rettner, M.E. Best, E.E. Fullerton, D. Weller, M. Parker, IEEE Trans. Magn. 36, 2137–2139 (2000)CrossRef
4.
Zurück zum Zitat G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Sens. Actuators, B 55, 99 (1999)CrossRef G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, E. Traversa, Sens. Actuators, B 55, 99 (1999)CrossRef
5.
Zurück zum Zitat E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logothetis, CO/HC sensors based on thin films of LaCoO3 oxides. Sens. Actuators, B 69, 171–182 (2000)CrossRef E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logothetis, CO/HC sensors based on thin films of LaCoO3 oxides. Sens. Actuators, B 69, 171–182 (2000)CrossRef
6.
Zurück zum Zitat H.J. Hwang, M. Awano, Preparation of LaCoO3-δ and La0.8Sr0.2CoO3-δ catalytic thin film by the sol-gel process and it’s NO decomposition characteristics. J. Eur. Ceram. Soc. 21, 2103–2107 (2001)CrossRef H.J. Hwang, M. Awano, Preparation of LaCoO3-δ and La0.8Sr0.2CoO3-δ catalytic thin film by the sol-gel process and it’s NO decomposition characteristics. J. Eur. Ceram. Soc. 21, 2103–2107 (2001)CrossRef
7.
Zurück zum Zitat E. Delgado, C.R. Michel, CO2 and O sensing behavior of nanostructured barium-doped SmCoO3. Mater. Lett. 60, 1613–1616 (2006)CrossRef E. Delgado, C.R. Michel, CO2 and O sensing behavior of nanostructured barium-doped SmCoO3. Mater. Lett. 60, 1613–1616 (2006)CrossRef
8.
Zurück zum Zitat L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, M. Borella, NdCoO3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties. Sens. Actuators, B 105, 407–411 (2005)CrossRef L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, M. Borella, NdCoO3 perovskite as possible candidate for CO-sensors: thin films synthesis and sensing properties. Sens. Actuators, B 105, 407–411 (2005)CrossRef
9.
Zurück zum Zitat D. Treves, Studies on orthoferrites at the weizmann institute of science. J. Appl. Phys. 36, 1033–1039 (1965)CrossRef D. Treves, Studies on orthoferrites at the weizmann institute of science. J. Appl. Phys. 36, 1033–1039 (1965)CrossRef
10.
Zurück zum Zitat R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)CrossRef R.H. Kodama, A.E. Berkowitz, Atomic-scale magnetic modeling of oxide nanoparticles. Phys. Rev. B 59, 6321–6336 (1999)CrossRef
11.
Zurück zum Zitat L. Chen, J. Hu, S. Fang, Z. Han, M. Zhao, Z. Wu, X. Liu, H. Qin, Ethanol-sensing properties of SmFe1−xNixO3 perovskite oxides. Sens. Actuators, B 139, 407–410 (2009)CrossRef L. Chen, J. Hu, S. Fang, Z. Han, M. Zhao, Z. Wu, X. Liu, H. Qin, Ethanol-sensing properties of SmFe1−xNixO3 perovskite oxides. Sens. Actuators, B 139, 407–410 (2009)CrossRef
12.
Zurück zum Zitat X. Liu, J. Hu, B. Cheng, H. Qin, M. Jiang, Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators, B 134, 483–487 (2008)CrossRef X. Liu, J. Hu, B. Cheng, H. Qin, M. Jiang, Acetone gas sensing properties of SmFe1−xMgxO3 perovskite oxides. Sens. Actuators, B 134, 483–487 (2008)CrossRef
13.
Zurück zum Zitat X. Ge, Y. Liu, X. Liu, Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials. Sens. Actuators, B 79, 171–174 (2001)CrossRef X. Ge, Y. Liu, X. Liu, Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials. Sens. Actuators, B 79, 171–174 (2001)CrossRef
14.
Zurück zum Zitat X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. Sens. Actuators, B 129, 53–58 (2008)CrossRef X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1−xO3 nanocrystals. Sens. Actuators, B 129, 53–58 (2008)CrossRef
15.
Zurück zum Zitat L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305–308 (2011)CrossRef L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application. Mater. Chem. Phys. 125, 305–308 (2011)CrossRef
16.
Zurück zum Zitat A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40, 14367–14373 (2014)CrossRef A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40, 14367–14373 (2014)CrossRef
17.
Zurück zum Zitat S. Azizi, A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, M.A. Valente, Physical properties and ethanol sensing of perovskite La0.8Pb0.2Fe1−xMgxO3 compounds. J. Alloys Compd. 644, 304–307 (2015)CrossRef S. Azizi, A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, M.A. Valente, Physical properties and ethanol sensing of perovskite La0.8Pb0.2Fe1−xMgxO3 compounds. J. Alloys Compd. 644, 304–307 (2015)CrossRef
18.
Zurück zum Zitat P. Song, H. Qin, X. Liu, S. Huang, R. Zhang, J. Hu, M. Jiang, Sens. Actuators, B 119, 415 (2006)CrossRef P. Song, H. Qin, X. Liu, S. Huang, R. Zhang, J. Hu, M. Jiang, Sens. Actuators, B 119, 415 (2006)CrossRef
19.
Zurück zum Zitat P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang, Mater. Sci. Eng., B 138, 193 (2007)CrossRef P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang, Mater. Sci. Eng., B 138, 193 (2007)CrossRef
20.
Zurück zum Zitat C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, Sens. Actuators, B 191, 239–245 (2014)CrossRef C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, Sens. Actuators, B 191, 239–245 (2014)CrossRef
21.
Zurück zum Zitat P. Song, J. Hu, H. Qin, L. Zhang, T. Xue, X. Liu, S. Huang, M. Jiang, J. Sol-Gel. Sci. Technol. 35, 65 (2005)CrossRef P. Song, J. Hu, H. Qin, L. Zhang, T. Xue, X. Liu, S. Huang, M. Jiang, J. Sol-Gel. Sci. Technol. 35, 65 (2005)CrossRef
22.
Zurück zum Zitat P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, Sens. Actuators, B 104, 312 (2005)CrossRef P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, Sens. Actuators, B 104, 312 (2005)CrossRef
24.
Zurück zum Zitat A. Guinier, Theorie et Technique de la radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p. 462 A. Guinier, Theorie et Technique de la radiocristallographie, 3rd edn. (Dunod, Paris, 1964), p. 462
25.
Zurück zum Zitat S. Seto, S. Yamada, K. Suzuki, Structural and optical characterizations of CdTe on CdS grown by hot-wall vacuum evaporation. Solar Energy Mater. Solar Cells 67, 167–171 (2001)CrossRef S. Seto, S. Yamada, K. Suzuki, Structural and optical characterizations of CdTe on CdS grown by hot-wall vacuum evaporation. Solar Energy Mater. Solar Cells 67, 167–171 (2001)CrossRef
26.
Zurück zum Zitat A. Benali, M. Bejar, E. Dhahri, E.K. Hlil, Study of critical behavior of perovskite La0.8Ca0.2−xPbxFeO3 (x = 0.0, 0.1 and 0.2) compounds. J. Alloys Compd. 638, 305–312 (2015)CrossRef A. Benali, M. Bejar, E. Dhahri, E.K. Hlil, Study of critical behavior of perovskite La0.8Ca0.2−xPbxFeO3 (x = 0.0, 0.1 and 0.2) compounds. J. Alloys Compd. 638, 305–312 (2015)CrossRef
27.
Zurück zum Zitat J.Q. Xu, Q.Y. Pan, Y. Shun, Z.Z. Tian, Sens. Actuators, B 66, 277–279 (2000)CrossRef J.Q. Xu, Q.Y. Pan, Y. Shun, Z.Z. Tian, Sens. Actuators, B 66, 277–279 (2000)CrossRef
28.
Zurück zum Zitat N. Rezlescu, P.D. Popa, E. Rezlescu, C. Doroftei, Microstructure characteristics of some polycrystalline oxide compounds prepared by sol–gel-self combustion way for gas sensor applications. Rom. J. Phys. 53, 545–555 (2008) N. Rezlescu, P.D. Popa, E. Rezlescu, C. Doroftei, Microstructure characteristics of some polycrystalline oxide compounds prepared by sol–gel-self combustion way for gas sensor applications. Rom. J. Phys. 53, 545–555 (2008)
29.
Zurück zum Zitat S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64, 415–418 (2010)CrossRef S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64, 415–418 (2010)CrossRef
30.
Zurück zum Zitat S. Chanda, S. Saha, A. Dutta, B. Irfan, R. Chatterjee, T.P. Sinha, Magnetic and dielectric properties of orthoferrites La1−xPrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5). J. Alloys Compd. 649, 1260–1266 (2015)CrossRef S. Chanda, S. Saha, A. Dutta, B. Irfan, R. Chatterjee, T.P. Sinha, Magnetic and dielectric properties of orthoferrites La1−xPrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5). J. Alloys Compd. 649, 1260–1266 (2015)CrossRef
31.
Zurück zum Zitat A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M.M. Gazzali, G. Chandrasekaran, An analysis on structural and magnetic properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A 123, 13 (2017)CrossRef A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M.M. Gazzali, G. Chandrasekaran, An analysis on structural and magnetic properties of La1−xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A 123, 13 (2017)CrossRef
32.
Zurück zum Zitat H.C. Gupta, M.K. Singh, L.M. Tiwari, Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc. 33, 67–70 (2002)CrossRef H.C. Gupta, M.K. Singh, L.M. Tiwari, Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc. 33, 67–70 (2002)CrossRef
33.
Zurück zum Zitat M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigen-modes of antiferromagnetic NdFeO3. J. Raman Spectrosc. 39, 842–848 (2008)CrossRef M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigen-modes of antiferromagnetic NdFeO3. J. Raman Spectrosc. 39, 842–848 (2008)CrossRef
34.
Zurück zum Zitat M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)CrossRef M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B 85, 054303 (2012)CrossRef
35.
Zurück zum Zitat J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C.S. Knee, A.K. Eriksson, S.-G. Eriksson, M. Rubhausen, R.P. Chaudhury, Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Phys. Rev. B 78, 235103 (2008)CrossRef J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C.S. Knee, A.K. Eriksson, S.-G. Eriksson, M. Rubhausen, R.P. Chaudhury, Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Phys. Rev. B 78, 235103 (2008)CrossRef
36.
Zurück zum Zitat A. Benali, M. Bejar, E. Dhahri, M. Sajieddin, M.P.F. Graça, M.A. Valente, Magnetic, Raman and Mossbauer properties of double-doping LaFeO3 perovskite oxides. Mater. Chem. Phys. 149–150, 1–6 (2014) A. Benali, M. Bejar, E. Dhahri, M. Sajieddin, M.P.F. Graça, M.A. Valente, Magnetic, Raman and Mossbauer properties of double-doping LaFeO3 perovskite oxides. Mater. Chem. Phys. 149–150, 1–6 (2014)
37.
Zurück zum Zitat J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)CrossRef J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)CrossRef
39.
Zurück zum Zitat A. Reetu, S. Agarwal, S. Ashima, N. Ahlawat, J. Appl. Phys. 113, 023908 (2013)CrossRef A. Reetu, S. Agarwal, S. Ashima, N. Ahlawat, J. Appl. Phys. 113, 023908 (2013)CrossRef
40.
Zurück zum Zitat A. Ghosh, M.G. Masud, K. Dey, B.K. Chaudhuri, J. Phys. Chem. Solids 75, 374–378 (2014)CrossRef A. Ghosh, M.G. Masud, K. Dey, B.K. Chaudhuri, J. Phys. Chem. Solids 75, 374–378 (2014)CrossRef
41.
Zurück zum Zitat R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249–250, 1–5 (2013)CrossRef R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249–250, 1–5 (2013)CrossRef
42.
Zurück zum Zitat Q. Xu, S. Zhou, D. Wu, M. Uhlarz, Y.K. Tang, K. Potzger, M.X. Xu, H. Schmidt, J. Appl. Phys. 107, 1–4 (2010) Q. Xu, S. Zhou, D. Wu, M. Uhlarz, Y.K. Tang, K. Potzger, M.X. Xu, H. Schmidt, J. Appl. Phys. 107, 1–4 (2010)
43.
Zurück zum Zitat L.R. Shah, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. D Appl. Phys. 43, 035002 (2010)CrossRef L.R. Shah, H. Zhu, W.G. Wang, B. Ali, T. Zhu, X. Fan, Y.Q. Song, Q.Y. Wen, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. D Appl. Phys. 43, 035002 (2010)CrossRef
44.
Zurück zum Zitat P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103 (2015)CrossRef P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103 (2015)CrossRef
45.
Zurück zum Zitat E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005), p. 14CrossRef E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New York, 2005), p. 14CrossRef
46.
Zurück zum Zitat S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion 146, 329 (2002)CrossRef S. Lanfredi, P.S. Saia, R. Lebullenger, A.C. Hernandes, Solid State Ion 146, 329 (2002)CrossRef
48.
Zurück zum Zitat M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Alloys Compd. 588, 551 (2014)CrossRef M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Alloys Compd. 588, 551 (2014)CrossRef
51.
Zurück zum Zitat S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931 (1993)CrossRef S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931 (1993)CrossRef
52.
Zurück zum Zitat M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)CrossRef M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)CrossRef
53.
Zurück zum Zitat M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, Electrical characterization of SiO2: LiNbO3 glass and glass–ceramics using dc conductivity, TSDC measure-ments and dielectric spectroscopy. J. Non-Cryst. Solids 353, 4390–4394 (2007)CrossRef M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, M.A. Valente, Electrical characterization of SiO2: LiNbO3 glass and glass–ceramics using dc conductivity, TSDC measure-ments and dielectric spectroscopy. J. Non-Cryst. Solids 353, 4390–4394 (2007)CrossRef
54.
Zurück zum Zitat A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)CrossRef A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)CrossRef
55.
Zurück zum Zitat S. Zhang, P. Song, Q. Wang, Enhanced acetone sensing performance of an α-Fe2O3-In2O3 heterostructure nanocomposite sensor. J. Phys. Chem. Solid 120, 261–270 (2018)CrossRef S. Zhang, P. Song, Q. Wang, Enhanced acetone sensing performance of an α-Fe2O3-In2O3 heterostructure nanocomposite sensor. J. Phys. Chem. Solid 120, 261–270 (2018)CrossRef
56.
Zurück zum Zitat P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, M. Jiang, Electrical and CO gas-sensing properties of perovskite-type La0.8Ca0.2Fe0.8Co0.2FeO3 semiconductive material. Phys. B 368, 204–208 (2005)CrossRef P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, M. Jiang, Electrical and CO gas-sensing properties of perovskite-type La0.8Ca0.2Fe0.8Co0.2FeO3 semiconductive material. Phys. B 368, 204–208 (2005)CrossRef
57.
Zurück zum Zitat H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, Structural and NH3 gas-sensing properties of La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0.00 ≤ x ≤ 0.20) perovskite compounds. J. Alloys Compd. 731, 655–661 (2018)CrossRef H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, Structural and NH3 gas-sensing properties of La0.8Ca0.1Pb0.1Fe1−xCoxO3 (0.00 ≤ x ≤ 0.20) perovskite compounds. J. Alloys Compd. 731, 655–661 (2018)CrossRef
Metadaten
Titel
High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound
verfasst von
A. Benali
M. Bejar
E. Dhahri
M. P. F. Graça
M. A. Valente
A. Radwan
Publikationsdatum
03.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01597-2

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt