Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

25.05.2019

Top-gate In–Al–Zn–O thin film transistor based on organic poly(methyl methacrylate) dielectric layer

verfasst von: Lan Yue, Fanxin Meng, Dasen Ren, Shengyun Luo

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we report a top-gate amorphous In–Al–Zn–O (a-IAZO) thin film transistor (TFT) based on dip-coated poly(methyl methacrylate) (PMMA) dielectric layer and investigate PMMA thickness influence on a-IAZO TFT performance. A thinner PMMA gate dielectric can cumulate more charges per unit area and induce more electron carriers, resulting in increasing of on-state current of TFT. Moreover, it is found that a TFT with the thinner PMMA gate dielectric contains less trap states at a-IAZO/PMMA interface due to decreased surface roughness with thinner PMMA dielectric, which is essential for reducing the capture of electron carriers in the process of electron transport. Therefore, the on/off current ratio (Ion/off), saturated mobility (μsat) and subthreshold gate swing (SS) of device improved with the PMMA thickness decreased from 610 to 280 nm. Furthermore, experimental results show that the PMMA thickness plays an important role on controlling the threshold voltage (Vth) and adjusting the operating mode of device, thus influencing on the power dissipation. Overall, the TFT with a 390-nm-thick PMMA dielectric layer exhibits the adequate operating mode (enhancement mode) and the high electrical performance (a high μsat of 21.42 cm2/Vs, a small SS of 0.46 V/decade, a close-to-zero Vth of 0.12 V, and Ion/off of more than104).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Normura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)CrossRef K. Normura, H. Ohta, A. Takagi, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)CrossRef
2.
Zurück zum Zitat S. Yang, D.-H. Cho, M.K. Ryu, S.-H.K. Park, C.-S. Hwang, J. Jang, J.K. Jeong, High-performance Al–Sn–Zn–In–O thin-film transistors: impact of passivation layer on device stability. IEEE Electron Device Lett. 31, 144–146 (2010)CrossRef S. Yang, D.-H. Cho, M.K. Ryu, S.-H.K. Park, C.-S. Hwang, J. Jang, J.K. Jeong, High-performance Al–Sn–Zn–In–O thin-film transistors: impact of passivation layer on device stability. IEEE Electron Device Lett. 31, 144–146 (2010)CrossRef
4.
Zurück zum Zitat D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Amorphous IZO-based transparent thin film transistors. Thin Solid Films 516, 5894–5898 (2008)CrossRef D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Amorphous IZO-based transparent thin film transistors. Thin Solid Films 516, 5894–5898 (2008)CrossRef
5.
Zurück zum Zitat W. Lim, Y.L. Wang, F. Ren, D.P. Norton, I.I. Kravchenko, J.M. Zavada, S.J. Pearton, Indium zinc oxide thin films deposited by sputtering at room temperature. Appl. Surf. Sci. 254, 2878–2881 (2008)CrossRef W. Lim, Y.L. Wang, F. Ren, D.P. Norton, I.I. Kravchenko, J.M. Zavada, S.J. Pearton, Indium zinc oxide thin films deposited by sputtering at room temperature. Appl. Surf. Sci. 254, 2878–2881 (2008)CrossRef
7.
Zurück zum Zitat W.W. Xia, G.D. Xia, G.S. Tu, X. Dong, S. Wang, R. Liu, Sol-gel processed high-k aluminum oxide dielectric films for fully solution-processed low-voltage thin-film transistors. Ceram. Int. 44, 9125–9131 (2018)CrossRef W.W. Xia, G.D. Xia, G.S. Tu, X. Dong, S. Wang, R. Liu, Sol-gel processed high-k aluminum oxide dielectric films for fully solution-processed low-voltage thin-film transistors. Ceram. Int. 44, 9125–9131 (2018)CrossRef
8.
Zurück zum Zitat J.Y. Kwon, J.S. Jung, K.S. Son, K.H. Lee, J.S. Park, T.S. Kim, J.S. Park, R. Choi, J.K. Jeong, B. Koo, S.Y. Lee, The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3513400CrossRef J.Y. Kwon, J.S. Jung, K.S. Son, K.H. Lee, J.S. Park, T.S. Kim, J.S. Park, R. Choi, J.K. Jeong, B. Koo, S.Y. Lee, The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor. Appl. Phys. Lett. (2010). https://​doi.​org/​10.​1063/​1.​3513400CrossRef
9.
Zurück zum Zitat G. Jiang, A. Liu, G.X. Liu, C.D. Zhu, Y. Meng, B. Shin, E. Fortunato, R. Martins, F. Shan, Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl. Phys. Lett. 97, 183503-1–183503-3 (2010) G. Jiang, A. Liu, G.X. Liu, C.D. Zhu, Y. Meng, B. Shin, E. Fortunato, R. Martins, F. Shan, Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Appl. Phys. Lett. 97, 183503-1–183503-3 (2010)
10.
Zurück zum Zitat C.X. Fan, A. Liu, Y. Meng, Z.D. Guo, G.X. Liu, F.K. Shan, Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Trans. Electron Devices 64, 4137–4143 (2017)CrossRef C.X. Fan, A. Liu, Y. Meng, Z.D. Guo, G.X. Liu, F.K. Shan, Solution-processed SrOx-gated oxide thin-film transistors and inverters. IEEE Trans. Electron Devices 64, 4137–4143 (2017)CrossRef
11.
Zurück zum Zitat J. Kim, S. Choi, J.-W. Jo, S.K. Park, Y.-H. Kim, Solution-processed lanthanum-doped Al2O3 gate dielectrics for high-mobility metal-oxide thin-film transistors. Thin Solid Films 660, 814–818 (2018)CrossRef J. Kim, S. Choi, J.-W. Jo, S.K. Park, Y.-H. Kim, Solution-processed lanthanum-doped Al2O3 gate dielectrics for high-mobility metal-oxide thin-film transistors. Thin Solid Films 660, 814–818 (2018)CrossRef
13.
Zurück zum Zitat M.R. Shijeesh, A.C. Saritha, M.K. Jayaraj, Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air. Mat. Sci. Semicon. Proc. 74, 116–121 (2018)CrossRef M.R. Shijeesh, A.C. Saritha, M.K. Jayaraj, Investigations on the reasons for degradation of zinc tin oxide thin film transistor on exposure to air. Mat. Sci. Semicon. Proc. 74, 116–121 (2018)CrossRef
14.
Zurück zum Zitat S.I.L. Kim, J.-S. Park, C.J. Kim, J.C. Park, I. Song, Y.S. Park, High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. J. Electrochem. Soc. 156, H184–H187 (2009)CrossRef S.I.L. Kim, J.-S. Park, C.J. Kim, J.C. Park, I. Song, Y.S. Park, High reliable and manufacturable gallium indium zinc oxide thin-film transistors using the double layers as an active layer. J. Electrochem. Soc. 156, H184–H187 (2009)CrossRef
15.
Zurück zum Zitat A. Facchetti, M.H. Yoon, T.J. Marks, Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005)CrossRef A. Facchetti, M.H. Yoon, T.J. Marks, Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005)CrossRef
16.
Zurück zum Zitat J.-A. Cheng, C.-S. Chuang, M.-N. Chang, Y.-C. Tsai, H.-P. Shieh, Controlable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics. Org. Electron. 9, 1069–1075 (2008)CrossRef J.-A. Cheng, C.-S. Chuang, M.-N. Chang, Y.-C. Tsai, H.-P. Shieh, Controlable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics. Org. Electron. 9, 1069–1075 (2008)CrossRef
17.
Zurück zum Zitat H. Faber, M. Burkhardt, A. Jedaa, D. Kalblein, H. Klauk, M. Halik, Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv. Mater. 21, 3099–3104 (2009)CrossRef H. Faber, M. Burkhardt, A. Jedaa, D. Kalblein, H. Klauk, M. Halik, Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv. Mater. 21, 3099–3104 (2009)CrossRef
20.
Zurück zum Zitat I. Karteri, S. Karatas, A.A. Al-Ghamdi, F. Yakuphanoglu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Met. 199, 241–245 (2015)CrossRef I. Karteri, S. Karatas, A.A. Al-Ghamdi, F. Yakuphanoglu, The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Met. 199, 241–245 (2015)CrossRef
21.
Zurück zum Zitat C.J. Chiu, Z.W. Pei, S.P. Chang, S.J. Chang, Influence of weight ratio of poly(4-vinylphenol) insulator on electronic properties of InGaZnO thin-film transistors. J. Nanomater. 2012, 1–7 (2012)CrossRef C.J. Chiu, Z.W. Pei, S.P. Chang, S.J. Chang, Influence of weight ratio of poly(4-vinylphenol) insulator on electronic properties of InGaZnO thin-film transistors. J. Nanomater. 2012, 1–7 (2012)CrossRef
22.
Zurück zum Zitat H.-C. Lai, B.-J. Tzeng, Z. Pei, C.-M. Chen, C.-J. Huang, Ultra-flexible amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor. SID Symp. Dig. Tech. Pap. 43, 764–767 (2012)CrossRef H.-C. Lai, B.-J. Tzeng, Z. Pei, C.-M. Chen, C.-J. Huang, Ultra-flexible amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor. SID Symp. Dig. Tech. Pap. 43, 764–767 (2012)CrossRef
23.
Zurück zum Zitat S.-W. Jung, J.-S. Choi, J.H. Park, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.C. Lim, S.S. Lee, H.Y. Chu, Oxide semiconductor-based flexible organic/inorganic hybrid thin-film transistors fabricated on polydimethylsiloxane elastomer. J. Nanosci. Nanotechnol. 16, 2752–2755 (2016)CrossRef S.-W. Jung, J.-S. Choi, J.H. Park, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.C. Lim, S.S. Lee, H.Y. Chu, Oxide semiconductor-based flexible organic/inorganic hybrid thin-film transistors fabricated on polydimethylsiloxane elastomer. J. Nanosci. Nanotechnol. 16, 2752–2755 (2016)CrossRef
24.
Zurück zum Zitat Y.H. Zhang, M.Z. Xia, L.H. Li, D.X. Long, Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chin. Phys. B 26, 1–17 (2017) Y.H. Zhang, M.Z. Xia, L.H. Li, D.X. Long, Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chin. Phys. B 26, 1–17 (2017)
25.
Zurück zum Zitat N.B. Ukah, J. Granstrom, R.R. Sanganna Gari, G.M. King, S. Guha, Low-operating voltage and stable organic field-effect transistors with poly(methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3669696CrossRef N.B. Ukah, J. Granstrom, R.R. Sanganna Gari, G.M. King, S. Guha, Low-operating voltage and stable organic field-effect transistors with poly(methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl. Phys. Lett. (2011). https://​doi.​org/​10.​1063/​1.​3669696CrossRef
26.
Zurück zum Zitat M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal, The relationship between optical inhomogeneity and film structure. Thin Solid Films 57, 173–178 (1979)CrossRef M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal, The relationship between optical inhomogeneity and film structure. Thin Solid Films 57, 173–178 (1979)CrossRef
29.
Zurück zum Zitat G.W. Hyung, J. Park, J.-X. Wang, H.W. Lee, Z.-H. Li, J.-R. Koo, S.J. Kwon, E.-S. Cho, W.Y. Kim, Y.K. Kim, Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn. J. Appl. Phys. (2013). https://doi.org/10.7567/JJAP.52.071102CrossRef G.W. Hyung, J. Park, J.-X. Wang, H.W. Lee, Z.-H. Li, J.-R. Koo, S.J. Kwon, E.-S. Cho, W.Y. Kim, Y.K. Kim, Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn. J. Appl. Phys. (2013). https://​doi.​org/​10.​7567/​JJAP.​52.​071102CrossRef
30.
Zurück zum Zitat W. Ye, J.P. Deng, X.F. Wang, L. Cui, Effect of thickness of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors. Appl. Surf. Sci. 390, 831–837 (2016)CrossRef W. Ye, J.P. Deng, X.F. Wang, L. Cui, Effect of thickness of Bi1.5Zn1.0Nb1.5O7 gate insulator on performance of ZnO based thin film transistors. Appl. Surf. Sci. 390, 831–837 (2016)CrossRef
31.
Zurück zum Zitat X.W. Ding, J.H. Zhang, W.M. Shi, H. Ding, H. Zhang, J. Li, X.Y. Jiang, Z.L. Zhang, C.Y. Fu, Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors. Mat. Sci. Semicon. Proc. 29, 326–330 (2015)CrossRef X.W. Ding, J.H. Zhang, W.M. Shi, H. Ding, H. Zhang, J. Li, X.Y. Jiang, Z.L. Zhang, C.Y. Fu, Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors. Mat. Sci. Semicon. Proc. 29, 326–330 (2015)CrossRef
32.
Zurück zum Zitat A.H. Chen, H.T. Cao, H.Z. Zhang, L.Y. Liang, Z.M. Liu, Z. Yu, Q. Wan, Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectron. Eng. 87, 2019–2023 (2010)CrossRef A.H. Chen, H.T. Cao, H.Z. Zhang, L.Y. Liang, Z.M. Liu, Z. Yu, Q. Wan, Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectron. Eng. 87, 2019–2023 (2010)CrossRef
Metadaten
Titel
Top-gate In–Al–Zn–O thin film transistor based on organic poly(methyl methacrylate) dielectric layer
verfasst von
Lan Yue
Fanxin Meng
Dasen Ren
Shengyun Luo
Publikationsdatum
25.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01548-x

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt