Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

25-11-2015

Introducing a novel model based on particle wave duality for energy dissipation analysis in MQCA circuits

Authors: Mohammad Nabi Mohammadi, Reza Sabbaghi-Nadooshan

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the limitations of the physical dimensions and high consumption of energy in electronic systems have been a major challenge. In order to decrease the physical size and energy consumption, various technologies have been investigated at the nano-scale. One of which is quantum cellular automata (QCA). This paper elaborates on the advantages of molecular QCA (MQCA) and proposes a new idea based on particle wave duality of free electron in QCA for energy dissipation analysis. The first stage is to calculate the dissipation of the internal dynamical and statically power of the cells considering the inner interaction of molecules. In return, by elaborating the inner calculation and consideration the distances and real size of the cells, energy dissipation values of MQCAs is calculated. Then, energy dissipation values for MQCA circuits consisting of binary wire and a majority gate are calculated. The achieved results show that in MQCA circuits, energy dissipation is very low. In addition, most of the energy dissipation in such circuits is related to the dynamical dissipation of the system. Our new concept proposes the separate use of classical physics and quantum mechanics properties in the calculation. Cell polarization changes simulated stage by stage based on current situation of electron and in each stage, the best conditions for calculations considered. The main innovation of this work is to introduce a new model based on particle wave duality for free electrons in MQCAs. In addition we presented equations to calculate total dissipation consisting dynamical and statically dissipation of MQCA circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Srivastava, S., Sarkar, S., Bhanja, S.: Power dissipation bounds and models for quantum-dot cellular automata circuits. In: 6th IEEE Conference Nanotechnology, vol. 1, pp. 375–378, June 2006 Srivastava, S., Sarkar, S., Bhanja, S.: Power dissipation bounds and models for quantum-dot cellular automata circuits. In: 6th IEEE Conference Nanotechnology, vol. 1, pp. 375–378, June 2006
2.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef
3.
go back to reference Momenzadeh, M., Huang, J., Lombardi, F.: Design and Test of Digital Circuits by Quantum Dot Cellular Automata. Artech House, Norwood (2008) Momenzadeh, M., Huang, J., Lombardi, F.: Design and Test of Digital Circuits by Quantum Dot Cellular Automata. Artech House, Norwood (2008)
4.
go back to reference Broglie, De: Recherches sur la theorie des Quanta, University of Paris, 1924. English translation published as Phase Waves of Louis de Broglie. Am. J. Phys. 40(9), 1315–1320 (1972) Broglie, De: Recherches sur la theorie des Quanta, University of Paris, 1924. English translation published as Phase Waves of Louis de Broglie. Am. J. Phys. 40(9), 1315–1320 (1972)
5.
go back to reference Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4(1–2), 115–118 (2005)CrossRef Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4(1–2), 115–118 (2005)CrossRef
6.
go back to reference Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125(4), 1056–1063 (2003)CrossRef Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125(4), 1056–1063 (2003)CrossRef
7.
go back to reference Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)CrossRef Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)CrossRef
8.
go back to reference Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef
9.
go back to reference Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. M.S. Thesis, Department of Electrical Engineering, Notre Dame University, Indiana (2006) Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. M.S. Thesis, Department of Electrical Engineering, Notre Dame University, Indiana (2006)
10.
go back to reference Li, Z., Fehler, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)CrossRef Li, Z., Fehler, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a Au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)CrossRef
11.
go back to reference Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixedvalence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)CrossRef Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixedvalence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)CrossRef
12.
go back to reference Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)CrossRef Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)CrossRef
13.
go back to reference Hider, M.B., Pitters, L.J., Dilabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)CrossRef Hider, M.B., Pitters, L.J., Dilabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)CrossRef
14.
go back to reference Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)CrossRef Blair, E.P., Yost, E., Lent, C.S.: Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)CrossRef
15.
go back to reference Lio, M., Lent, C.S.: Power dissipation in clocked quantum-dot cellular automata circuits. In: 63rd Device Research Conference, vol. 1, pp. 123–124, June 2005 Lio, M., Lent, C.S.: Power dissipation in clocked quantum-dot cellular automata circuits. In: 63rd Device Research Conference, vol. 1, pp. 123–124, June 2005
16.
go back to reference Ottavi, M., Pontarelli, S., DeBenedictis, E., Salsano, A., Kogge, P., Lombardi, F.: High throughput and low power dissipation in QCA pipelines using bennett clocking. In: ACM International Symposium on Nanoscale Architectures, pp. 17–22, June 2010 Ottavi, M., Pontarelli, S., DeBenedictis, E., Salsano, A., Kogge, P., Lombardi, F.: High throughput and low power dissipation in QCA pipelines using bennett clocking. In: ACM International Symposium on Nanoscale Architectures, pp. 17–22, June 2010
17.
go back to reference Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)CrossRef Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)CrossRef
18.
go back to reference Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits. J. Comput. Electron. 9(1), 16–30 (2010)CrossRef Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular quantum-dot cellular automata based circuits. J. Comput. Electron. 9(1), 16–30 (2010)CrossRef
19.
go back to reference Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)CrossRef Lent, C.S., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)CrossRef
20.
go back to reference Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 120–121, Oct 2004 Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 120–121, Oct 2004
21.
go back to reference Bond, L., Macucci, M.: Analysis of power dissipation in clocked quantum cellular automaton circuits. In: Proceedings of 36th European Solid-State Device Research Conference, pp. 58–61, Sep 2006 Bond, L., Macucci, M.: Analysis of power dissipation in clocked quantum cellular automaton circuits. In: Proceedings of 36th European Solid-State Device Research Conference, pp. 58–61, Sep 2006
22.
go back to reference Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., SayedSalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)CrossRef Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., SayedSalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)CrossRef
23.
go back to reference Kummamuru, R.K., Orlov, A.O., Toth, G., Timler, J., Rajagopal, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Power Gain in a quantum-dot cellular automata (QCA) shift register. In: Proceedings of 1st IEEE Conference on Nanotechnology, pp. 431–436, Oct 2001 Kummamuru, R.K., Orlov, A.O., Toth, G., Timler, J., Rajagopal, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Power Gain in a quantum-dot cellular automata (QCA) shift register. In: Proceedings of 1st IEEE Conference on Nanotechnology, pp. 431–436, Oct 2001
24.
go back to reference Weiqiang, L., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11(6), 1239–1251 (2012) Weiqiang, L., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11(6), 1239–1251 (2012)
25.
go back to reference Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)CrossRef Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: quantum-dot cellular automata. Proc. IEEE 94(6), 1225–1244 (2006)CrossRef
26.
go back to reference Walus, K., Dysart, T., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef Walus, K., Dysart, T., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef
27.
go back to reference Walus, K., Budiman, R.A., Jullien, G.A.: Split current quantum dot cellular automata—modeling and simulation. IEEE Trans. Nanotechnol. 3(2), 249–255 (2004)CrossRef Walus, K., Budiman, R.A., Jullien, G.A.: Split current quantum dot cellular automata—modeling and simulation. IEEE Trans. Nanotechnol. 3(2), 249–255 (2004)CrossRef
28.
go back to reference Schulhof, G., Walus, K., Graham, A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. 3(2), 2 (2007)CrossRef Schulhof, G., Walus, K., Graham, A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. 3(2), 2 (2007)CrossRef
29.
go back to reference Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design for CLB implementation of a FPGA in quantum-dot cellular automata (QCA). In: NANOARCH, pp. 36–42 (2012) Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design for CLB implementation of a FPGA in quantum-dot cellular automata (QCA). In: NANOARCH, pp. 36–42 (2012)
30.
go back to reference Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014) Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)
31.
go back to reference Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetCrossRefMATH Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetCrossRefMATH
32.
go back to reference Srivastava, S., Asthana, A., Bhanja, A., Sarkar, S.: QCAPro—An error-power estimation tool for QCA circuit design. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2377–2380, 2011 Srivastava, S., Asthana, A., Bhanja, A., Sarkar, S.: QCAPro—An error-power estimation tool for QCA circuit design. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2377–2380, 2011
33.
go back to reference Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)CrossRef Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)CrossRef
34.
go back to reference Neamen, D.A.: Introduction to quantum mechanics. Semiconductor Physics and Devices. Basic Principles, 3rd edn, pp. 24–55. McGraw Hill, New Mexico (2003) Neamen, D.A.: Introduction to quantum mechanics. Semiconductor Physics and Devices. Basic Principles, 3rd edn, pp. 24–55. McGraw Hill, New Mexico (2003)
35.
go back to reference Halliday, D.: Electric charge. Fundamentals of Physics, 9th edn, pp. 561–580. Wiley, New York (2011) Halliday, D.: Electric charge. Fundamentals of Physics, 9th edn, pp. 561–580. Wiley, New York (2011)
36.
go back to reference Zettili, N.: One-dimentional problems. Quantum Mechanics: Concepts and Applications, 2nd edn, pp. 215–239. Wiley, Jacksonville (2009) Zettili, N.: One-dimentional problems. Quantum Mechanics: Concepts and Applications, 2nd edn, pp. 215–239. Wiley, Jacksonville (2009)
Metadata
Title
Introducing a novel model based on particle wave duality for energy dissipation analysis in MQCA circuits
Authors
Mohammad Nabi Mohammadi
Reza Sabbaghi-Nadooshan
Publication date
25-11-2015
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0765-2

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue