Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the great promise of Li–S batteries, many challenges need to be addressed before they can find practical applications. For example, the low electrical conductivities of sulfur, polysulfide products and the final Li2S product affect the utilization of the active sulfur material and the rate capability of the battery. The highly soluble polysulfides in the electrolyte, which can shuttle between the anode and cathode and form a deposit of solid Li2S2/Li2S on the cathode and anode, cause an irreversible loss of sulfur, which leads to low Coulombic efficiency, low cyclic capacity and an increase in impedance. A volume change (80%) between sulfur and Li2S during charge/discharge induces stress in the electrode and destroys its structural stability, which leads to rapid capacity decay. In this book, firstly I will introduce the background of rechargeable Li–S batteries, then I will demonstrate three strategies to improve the performance of Li–S batteries from physical confinement, chemical binding and battery configuration design. Finally, conclusions and perspective were included.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
2.
go back to reference Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRef Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935CrossRef
3.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef
4.
go back to reference Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef
5.
go back to reference Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787CrossRef Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114(23):11751–11787CrossRef
6.
go back to reference Liang Z et al (2014) Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5):5249–5256CrossRef Liang Z et al (2014) Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5):5249–5256CrossRef
7.
go back to reference Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef
8.
go back to reference Kolosnitsyn VS, Karaseva EV (2008) Lithium-sulfur batteries: Problems and solutions. Russ J Electrochem 44(5):506–509CrossRef Kolosnitsyn VS, Karaseva EV (2008) Lithium-sulfur batteries: Problems and solutions. Russ J Electrochem 44(5):506–509CrossRef
9.
go back to reference Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef
10.
go back to reference Wang D-W et al (2013) Carbon-sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef Wang D-W et al (2013) Carbon-sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef
11.
go back to reference Zhang Q, Cheng XB, Huang JQ, Peng HJ, Wei F (2014) Review of carbon materials for advanced lithium-sulfur batteries. New Carbon Mater 29(4):241–264 Zhang Q, Cheng XB, Huang JQ, Peng HJ, Wei F (2014) Review of carbon materials for advanced lithium-sulfur batteries. New Carbon Mater 29(4):241–264
12.
go back to reference Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef
13.
go back to reference Liang CD, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21(19):4724–4730CrossRef Liang CD, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21(19):4724–4730CrossRef
14.
go back to reference Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef
15.
go back to reference Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef
16.
go back to reference Li Z et al (2014) Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater 4(7):1301473CrossRef Li Z et al (2014) Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater 4(7):1301473CrossRef
17.
go back to reference Wang HL et al (2011) Graphene-Wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRef Wang HL et al (2011) Graphene-Wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRef
18.
go back to reference Cao YL et al (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665CrossRef Cao YL et al (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665CrossRef
19.
go back to reference Zhang FF, Zhang XB, Dong YH, Wang LM (2012) Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J Mater Chem 22(23):11452–11454CrossRef Zhang FF, Zhang XB, Dong YH, Wang LM (2012) Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J Mater Chem 22(23):11452–11454CrossRef
20.
go back to reference Huang J-Q et al (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2(2):314–321CrossRef Huang J-Q et al (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2(2):314–321CrossRef
21.
go back to reference Lv W et al (2014) Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv Funct Mater 24(22):3456–3463CrossRef Lv W et al (2014) Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv Funct Mater 24(22):3456–3463CrossRef
22.
go back to reference Zhao M-Q et al (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6(12):10759–10769CrossRef Zhao M-Q et al (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6(12):10759–10769CrossRef
23.
go back to reference Peng H-J et al (2014) Nanoarchitectured Graphene/CNT@Porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater 24(19):2772–2781CrossRef Peng H-J et al (2014) Nanoarchitectured Graphene/CNT@Porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater 24(19):2772–2781CrossRef
24.
go back to reference Zhao M-Q et al (2014) Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 5:3410 Zhao M-Q et al (2014) Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 5:3410
25.
go back to reference Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525CrossRef Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525CrossRef
26.
go back to reference Zu CX, Manthiram A (2013) Hydroxylated graphene–sulfur nanocomposites for high-rate lithium–sulfur batteries. Adv Energy Mater 3(8):1008–1012CrossRef Zu CX, Manthiram A (2013) Hydroxylated graphene–sulfur nanocomposites for high-rate lithium–sulfur batteries. Adv Energy Mater 3(8):1008–1012CrossRef
27.
go back to reference Zhang C et al (2014) Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater 4(7):1301565CrossRef Zhang C et al (2014) Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater 4(7):1301565CrossRef
28.
go back to reference Yuan LX, Yuan HP, Qiu XP, Chen LQ, Zhu WT (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189(2):1141–1146CrossRef Yuan LX, Yuan HP, Qiu XP, Chen LQ, Zhu WT (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189(2):1141–1146CrossRef
29.
go back to reference Zhang S-M et al (2013) Composite cathodes containing SWCNT@S coaxial nanocables: facile synthesis, surface modification, and enhanced performance for Li-Ion storage. Part Part Syst Charact 30(2):158–165CrossRef Zhang S-M et al (2013) Composite cathodes containing SWCNT@S coaxial nanocables: facile synthesis, surface modification, and enhanced performance for Li-Ion storage. Part Part Syst Charact 30(2):158–165CrossRef
30.
go back to reference Su YS, Fu YZ, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14(42):14495–14499CrossRef Su YS, Fu YZ, Manthiram A (2012) Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys Chem Chem Phys 14(42):14495–14499CrossRef
31.
go back to reference Dorfler S et al (2012) High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun 48(34):4097–4099CrossRef Dorfler S et al (2012) High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem Commun 48(34):4097–4099CrossRef
32.
go back to reference Huang JQ et al (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106CrossRef Huang JQ et al (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106CrossRef
33.
go back to reference Cheng X-B et al (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4:65–72CrossRef Cheng X-B et al (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4:65–72CrossRef
34.
go back to reference Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef
35.
go back to reference Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294CrossRef Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294CrossRef
36.
go back to reference Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200CrossRef Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200CrossRef
37.
go back to reference Wu F, Lee JT, Zhao E, Zhang B, Yushin G (2016) Graphene–Li2S–Carbon nanocomposite for lithium-sulfur batteries. ACS Nano 10(1):1333–1340CrossRef Wu F, Lee JT, Zhao E, Zhang B, Yushin G (2016) Graphene–Li2S–Carbon nanocomposite for lithium-sulfur batteries. ACS Nano 10(1):1333–1340CrossRef
38.
go back to reference Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965CrossRef Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965CrossRef
39.
go back to reference Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. J Phys Chem C 116(16):8910–8915CrossRef Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. J Phys Chem C 116(16):8910–8915CrossRef
40.
go back to reference Xiao LF et al (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181CrossRef Xiao LF et al (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181CrossRef
41.
go back to reference Wu F et al (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063CrossRef Wu F et al (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063CrossRef
42.
go back to reference Chen HW et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep 3:1910 Chen HW et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep 3:1910
43.
go back to reference Choi YJ et al (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta T129:62–65CrossRef Choi YJ et al (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta T129:62–65CrossRef
44.
go back to reference Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J Phys Chem C 116(37):19653–19658CrossRef Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J Phys Chem C 116(37):19653–19658CrossRef
45.
go back to reference Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2:325–331CrossRef Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2:325–331CrossRef
46.
go back to reference Zheng W, Hu XG, Zhang CF (2006) Electrochemical properties of rechargeable lithium batteries with sulfur-containing composite cathode materials. Electrochem Solid State Lett 9(7):A364–A367CrossRef Zheng W, Hu XG, Zhang CF (2006) Electrochemical properties of rechargeable lithium batteries with sulfur-containing composite cathode materials. Electrochem Solid State Lett 9(7):A364–A367CrossRef
47.
go back to reference Sun F et al (2013) A high-rate lithium-sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J Mater Chem A 1(42):13283–13289CrossRef Sun F et al (2013) A high-rate lithium-sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J Mater Chem A 1(42):13283–13289CrossRef
48.
go back to reference Song MS et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795CrossRef Song MS et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795CrossRef
49.
go back to reference Seh Z et al (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4:1331CrossRef Seh Z et al (2013) Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4:1331CrossRef
50.
go back to reference Tao X et al (2014) Strong sulfur binding with conducting Magnéli-Phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294CrossRef Tao X et al (2014) Strong sulfur binding with conducting Magnéli-Phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294CrossRef
51.
go back to reference Yang Y et al (2012) High-Capacity micrometer-Sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134(37):15387–15394CrossRef Yang Y et al (2012) High-Capacity micrometer-Sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134(37):15387–15394CrossRef
52.
go back to reference Zu C, Klein M, Manthiram A (2014) Activated Li2S as a high-performance cathode for rechargeable lithium-sulfur batteries. J Phys Chem Lett 5(22):3986–3991CrossRef Zu C, Klein M, Manthiram A (2014) Activated Li2S as a high-performance cathode for rechargeable lithium-sulfur batteries. J Phys Chem Lett 5(22):3986–3991CrossRef
53.
go back to reference Son Y, Lee J-S, Son Y, Jang J-H, Cho J (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater 5(16):1500110CrossRef Son Y, Lee J-S, Son Y, Jang J-H, Cho J (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater 5(16):1500110CrossRef
54.
go back to reference Yang Y et al (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491CrossRef Yang Y et al (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491CrossRef
55.
go back to reference Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374CrossRef Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374CrossRef
56.
go back to reference Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D (2014) The Use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J Phys Chem Lett 5(5):915–918CrossRef Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D (2014) The Use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J Phys Chem Lett 5(5):915–918CrossRef
57.
go back to reference Wang C et al (2015) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15(3):1796–1802CrossRef Wang C et al (2015) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15(3):1796–1802CrossRef
58.
go back to reference Obrovac MN, Dahn JR (2002) Electrochemically active lithia/metal and lithium sulfide/metal composites. Electrochem Solid State Lett 5(4):A70–A73CrossRef Obrovac MN, Dahn JR (2002) Electrochemically active lithia/metal and lithium sulfide/metal composites. Electrochem Solid State Lett 5(4):A70–A73CrossRef
59.
go back to reference Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2008) All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 183(1):422–426CrossRef Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M (2008) All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sources 183(1):422–426CrossRef
60.
go back to reference Zhou Y, Wu C, Zhang H, Wu X, Fu Z (2007) Electrochemical reactivity of Co–Li2S nanocomposite for lithium-ion batteries. Electrochim Acta 52(9):3130–3136CrossRef Zhou Y, Wu C, Zhang H, Wu X, Fu Z (2007) Electrochemical reactivity of Co–Li2S nanocomposite for lithium-ion batteries. Electrochim Acta 52(9):3130–3136CrossRef
61.
go back to reference Nan C et al (2014) Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J Am Chem Soc 136(12):4659–4663CrossRef Nan C et al (2014) Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J Am Chem Soc 136(12):4659–4663CrossRef
62.
go back to reference Guo J, Yang Z, Yu Y, Abruña HD, Archer LA (2013) Lithium-Sulfur battery cathode enabled by lithium-nitrile interaction. J Am Chem Soc 135(2):763–767CrossRef Guo J, Yang Z, Yu Y, Abruña HD, Archer LA (2013) Lithium-Sulfur battery cathode enabled by lithium-nitrile interaction. J Am Chem Soc 135(2):763–767CrossRef
63.
go back to reference Seh ZW et al (2014) Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 5:5017CrossRef Seh ZW et al (2014) Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 5:5017CrossRef
64.
go back to reference Zheng G et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotech 9(8):618–623CrossRef Zheng G et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotech 9(8):618–623CrossRef
65.
go back to reference Yan K et al (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016–6022CrossRef Yan K et al (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14(10):6016–6022CrossRef
66.
go back to reference Lin D et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nano 11(7):626–632CrossRef Lin D et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nano 11(7):626–632CrossRef
67.
go back to reference Liang Z et al (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA 113(11):2862–2867CrossRef Liang Z et al (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA 113(11):2862–2867CrossRef
68.
go back to reference Huang C et al (2014) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015 Huang C et al (2014) Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat Commun 5:3015
69.
go back to reference Liu NA, Hu LB, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5(8):6487–6493CrossRef Liu NA, Hu LB, McDowell MT, Jackson A, Cui Y (2011) Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5(8):6487–6493CrossRef
70.
go back to reference Brückner J et al (2014) Carbon-Based Anodes For Lithium Sulfur Full Cells With High Cycle Stability. Adv Funct Mater 24(9):1284–1289CrossRef Brückner J et al (2014) Carbon-Based Anodes For Lithium Sulfur Full Cells With High Cycle Stability. Adv Funct Mater 24(9):1284–1289CrossRef
71.
go back to reference Huang J-Q, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145CrossRef Huang J-Q, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145CrossRef
72.
go back to reference Huang JQ et al (2014) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci 7(1):347–353CrossRef Huang JQ et al (2014) Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ Sci 7(1):347–353CrossRef
73.
go back to reference Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166CrossRef Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166CrossRef
74.
go back to reference Su YS, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48(70):8817–8819CrossRef Su YS, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48(70):8817–8819CrossRef
75.
go back to reference Zu CX, Su YS, Fu YZ, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297CrossRef Zu CX, Su YS, Fu YZ, Manthiram A (2013) Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297CrossRef
76.
go back to reference Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources 242:65–69CrossRef Wang X, Wang Z, Chen L (2013) Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources 242:65–69CrossRef
77.
go back to reference Chang DR, Lee SH, Kim SW, Kim HT (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery. J Power Sources 112(2):452–460CrossRef Chang DR, Lee SH, Kim SW, Kim HT (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery. J Power Sources 112(2):452–460CrossRef
78.
go back to reference Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325CrossRef Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325CrossRef
79.
go back to reference Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of Liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137CrossRef Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of Liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137CrossRef
80.
go back to reference Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481CrossRef Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481CrossRef
81.
go back to reference Yuan LX et al (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614CrossRef Yuan LX et al (2006) Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 8(4):610–614CrossRef
82.
go back to reference Park JW, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic Liquid Electrolytes for Lithium–Sulfur Batteries. J Phys Chem C 117(40):20531–20541CrossRef Park JW, Ueno K, Tachikawa N, Dokko K, Watanabe M (2013) Ionic Liquid Electrolytes for Lithium–Sulfur Batteries. J Phys Chem C 117(40):20531–20541CrossRef
83.
go back to reference Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338CrossRef
84.
go back to reference Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201CrossRef Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201CrossRef
85.
go back to reference Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2003) All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem Commun 5(8):701–705CrossRef Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2003) All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem Commun 5(8):701–705CrossRef
86.
go back to reference Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56(17):6055–6059CrossRef Nagao M, Hayashi A, Tatsumisago M (2011) Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim Acta 56(17):6055–6059CrossRef
Metadata
Title
Introduction
Author
Guangmin Zhou
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3406-0_1