Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The tradition classic approach toward genetic approach is present. Several methods for DNA extraction, amplification and electrophoresis are enumerated. Different kinds of approaches have their own advantages and application occasions. Microfluidic is a newly developed technology that aims at precisely manipulating fluidic of micro-scale. The microfluidic made it possible to integrate tradition genetic analysis process onto one single microchip for automation. Several trials have been made to transplant tradition process onto microfluidic platform, although various weak points restricted them from further industrialization. This chapter will give a brief introduction of the standard three-step process of genetic analysis on each step followed by a detailed expatiation on the development of microfluidic technology. All steps of genetic analysis, extraction, amplification and detection, have all been transplanted on-chip separately, and further researches also reported the integration of partial process. Several integrated systems are also introduced, along with careful evaluations. At the end of chapter, the significance of this study will be stated, and mainlines of following chapters will be addressed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose Nucleic Acid. Nature. 1953;171(4356):737–8.CrossRef Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose Nucleic Acid. Nature. 1953;171(4356):737–8.CrossRef
2.
go back to reference Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L, et al. New goals for the US Human Genome Project: 1998-2003. Science. 1998;282(5389):682–9.CrossRef Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L, et al. New goals for the US Human Genome Project: 1998-2003. Science. 1998;282(5389):682–9.CrossRef
3.
go back to reference Lander ES, Int Human Genome Sequencing C, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRef Lander ES, Int Human Genome Sequencing C, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRef
4.
go back to reference Tian HJ, Huhmer AFR, Landers JP. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem. 2000;283(2):175–91.CrossRef Tian HJ, Huhmer AFR, Landers JP. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem. 2000;283(2):175–91.CrossRef
5.
go back to reference Sheldon EL, Levenson CH, Mullis KB, Rapoport H, inventors; Cetus Corp (Cetu-C), assignee. New reagents for labelling nucleic acids and their intermediates - contg. label, spacer and alkylating intercalation gp., useful for making hybridisation probes patent EP156287-A2; EP156287-A; AU8540188-A; JP60226888-A; DK8501216-A; US4582789-A; ES8606386-A; ZA8502126-A; IL74658-A. EP156287-A2 EP156287-A 02 Oct 1985 198540. Sheldon EL, Levenson CH, Mullis KB, Rapoport H, inventors; Cetus Corp (Cetu-C), assignee. New reagents for labelling nucleic acids and their intermediates - contg. label, spacer and alkylating intercalation gp., useful for making hybridisation probes patent EP156287-A2; EP156287-A; AU8540188-A; JP60226888-A; DK8501216-A; US4582789-A; ES8606386-A; ZA8502126-A; IL74658-A. EP156287-A2 EP156287-A 02 Oct 1985 198540.
6.
go back to reference Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science. 1985;230(4732):1350–4.CrossRef Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science. 1985;230(4732):1350–4.CrossRef
7.
go back to reference Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105(4):1176–81.CrossRef Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A. 2008;105(4):1176–81.CrossRef
8.
go back to reference Jin C, Dalal RV, Petrov AN, Tsai A, O'Leary SE, Chapin K, et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci U S A. 2014;111(2):664–9.CrossRef Jin C, Dalal RV, Petrov AN, Tsai A, O'Leary SE, Chapin K, et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc Natl Acad Sci U S A. 2014;111(2):664–9.CrossRef
9.
go back to reference Braslavsky I, Hebert B, Kartalov E, Quake SR. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A. 2003;100(7):3960–4.CrossRef Braslavsky I, Hebert B, Kartalov E, Quake SR. Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A. 2003;100(7):3960–4.CrossRef
10.
go back to reference Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320(5872):106–9.CrossRef Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA sequencing of a viral genome. Science. 2008;320(5872):106–9.CrossRef
11.
go back to reference Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time dna sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.CrossRef Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time dna sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.CrossRef
12.
go back to reference Kheterpal I, Scherer JR, Clark SM, Radhakrishnan A, Ju J, Ginther CL, et al. DNA sequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis. 1996;17(12):1852–9.CrossRef Kheterpal I, Scherer JR, Clark SM, Radhakrishnan A, Ju J, Ginther CL, et al. DNA sequencing using a four-color confocal fluorescence capillary array scanner. Electrophoresis. 1996;17(12):1852–9.CrossRef
13.
go back to reference Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463.CrossRef Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463.CrossRef
14.
go back to reference Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass-capillaries. Anal Chem. 1981;53(8):1298–302.CrossRef Jorgenson JW, Lukacs KD. Zone electrophoresis in open-tubular glass-capillaries. Anal Chem. 1981;53(8):1298–302.CrossRef
15.
go back to reference Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass-capillaries. Clin Chem. 1981;27(9):1551–3. Jorgenson JW, Lukacs KD. Free-zone electrophoresis in glass-capillaries. Clin Chem. 1981;27(9):1551–3.
16.
go back to reference Cohen AS, Karger BL. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J Chromatogr. 1987;397:409–17.CrossRef Cohen AS, Karger BL. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J Chromatogr. 1987;397:409–17.CrossRef
17.
go back to reference Cohen AS, Terabe S, Smith JA, Karger BL. High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides - retention manipulation via micellar solutions and metal additives. Anal Chem. 1987;59(7):1021–7.CrossRef Cohen AS, Terabe S, Smith JA, Karger BL. High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides - retention manipulation via micellar solutions and metal additives. Anal Chem. 1987;59(7):1021–7.CrossRef
18.
go back to reference Swerdlow H, Gesteland R. Capillary gel-electrophoresis for rapid, high-resolution dna sequencing. Nucleic Acids Res. 1990;18(6):1415–9.CrossRef Swerdlow H, Gesteland R. Capillary gel-electrophoresis for rapid, high-resolution dna sequencing. Nucleic Acids Res. 1990;18(6):1415–9.CrossRef
19.
go back to reference Swerdlow H, Zhang JZ, Chen DY, Harke HR, Grey R, SL W, et al. 3 DNA sequencing methods using capillary gel-electrophoresis and laser-induced fluorescence. Anal Chem. 1991;63(24):2835–41.CrossRef Swerdlow H, Zhang JZ, Chen DY, Harke HR, Grey R, SL W, et al. 3 DNA sequencing methods using capillary gel-electrophoresis and laser-induced fluorescence. Anal Chem. 1991;63(24):2835–41.CrossRef
20.
go back to reference Fodor SPA, Read JL, Pirrung MC, Stryer L, AT L, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–73.CrossRef Fodor SPA, Read JL, Pirrung MC, Stryer L, AT L, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251(4995):767–73.CrossRef
21.
go back to reference Yi S, Dhumpa R, Dang Duong B, Hogberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip. 2011;11(8):1457–63.CrossRef Yi S, Dhumpa R, Dang Duong B, Hogberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab Chip. 2011;11(8):1457–63.CrossRef
22.
go back to reference Mo Chao H, Hongye Y, Yoke Kong K, Mo-Huang L, Ying JY. Integrated two-step gene synthesis in a microfluidic device. Lab Chip. 2009;9(2):276–85.CrossRef Mo Chao H, Hongye Y, Yoke Kong K, Mo-Huang L, Ying JY. Integrated two-step gene synthesis in a microfluidic device. Lab Chip. 2009;9(2):276–85.CrossRef
23.
go back to reference Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific dna-sequences. Biotechnology. 1992;10(4):413–7.CrossRef Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific dna-sequences. Biotechnology. 1992;10(4):413–7.CrossRef
24.
go back to reference Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Biotechnology. 1993;11(9):1026–30. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Biotechnology. 1993;11(9):1026–30.
25.
go back to reference Gibson UEM, Heid CA, Williams PM. A novel method for real time quantitative RT PCR. Genome Res. 1996;6(10):995–1001.CrossRef Gibson UEM, Heid CA, Williams PM. A novel method for real time quantitative RT PCR. Genome Res. 1996;6(10):995–1001.CrossRef
26.
go back to reference Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain-reaction product by utilizing the 5′- 3′ exonuclease activity of thermus-aquaticus DNA-polymerase. Proc Natl Acad Sci U S A. 1991;88(16):7276–80.CrossRef Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain-reaction product by utilizing the 5′- 3′ exonuclease activity of thermus-aquaticus DNA-polymerase. Proc Natl Acad Sci U S A. 1991;88(16):7276–80.CrossRef
27.
go back to reference Ronaghi M, Uhlén M, Nyrén PA. Sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–5.CrossRef Ronaghi M, Uhlén M, Nyrén PA. Sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–5.CrossRef
28.
go back to reference Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9.CrossRef Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–9.CrossRef
29.
go back to reference Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.
30.
go back to reference Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRef Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.CrossRef
31.
go back to reference Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.CrossRef Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.CrossRef
32.
go back to reference Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 2008;36:4.CrossRef Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 2008;36:4.CrossRef
33.
go back to reference Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20). Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20).
34.
go back to reference Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 2006;34(3). Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 2006;34(3).
35.
go back to reference Clarke J, HC W, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.CrossRef Clarke J, HC W, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.CrossRef
36.
go back to reference McNally B, Singer A, ZL Y, Sun YJ, Weng ZP, Meller A. Optical recognition of converted dna nucleotides for single-molecule dna sequencing using nanopore arrays. Nano Lett. 2010;10(6):2237–44.CrossRef McNally B, Singer A, ZL Y, Sun YJ, Weng ZP, Meller A. Optical recognition of converted dna nucleotides for single-molecule dna sequencing using nanopore arrays. Nano Lett. 2010;10(6):2237–44.CrossRef
37.
go back to reference Manz A, Graber N, Widmer HM. Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sens Actuator B-Chem. 1990;1(1–6):244–8.CrossRef Manz A, Graber N, Widmer HM. Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sens Actuator B-Chem. 1990;1(1–6):244–8.CrossRef
38.
go back to reference Lamb LS. Responsibilities in point-of-care testing - an institutional perspective. Arch Pathol Lab Med. 1995;119(10):886–9. Lamb LS. Responsibilities in point-of-care testing - an institutional perspective. Arch Pathol Lab Med. 1995;119(10):886–9.
39.
go back to reference Lamb LS Jr, Parrish RS, Goran SF, Biel MH. Current nursing practice of point-of-care laboratory diagnostic testing in critical care units. Am J Crit Care. 1995;4(6):429–34. Lamb LS Jr, Parrish RS, Goran SF, Biel MH. Current nursing practice of point-of-care laboratory diagnostic testing in critical care units. Am J Crit Care. 1995;4(6):429–34.
40.
go back to reference Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–50.CrossRef Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–50.CrossRef
41.
go back to reference Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–92.CrossRef Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–92.CrossRef
42.
go back to reference Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces. 2009;1(1):124–9.CrossRef Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS. Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces. 2009;1(1):124–9.CrossRef
43.
go back to reference Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–34.CrossRef Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–34.CrossRef
44.
go back to reference Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRef Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.CrossRef
45.
go back to reference Li X, Tian JF, Nguyen T, Shen W. Paper-based microfluidic devices by plasma treatment. Anal Chem. 2008;80(23):9131–4.CrossRef Li X, Tian JF, Nguyen T, Shen W. Paper-based microfluidic devices by plasma treatment. Anal Chem. 2008;80(23):9131–4.CrossRef
46.
go back to reference Lu Y, Shi WW, Jiang L, Qin JH, Lin BC. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis. 2009;30(9):1497–500.CrossRef Lu Y, Shi WW, Jiang L, Qin JH, Lin BC. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis. 2009;30(9):1497–500.CrossRef
47.
go back to reference Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRef Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5.CrossRef
48.
go back to reference Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, et al. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 2014;25(9). Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, et al. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology 2014;25(9).
49.
go back to reference Mao X, Ma YQ, Zhang AG, Zhang LR, Zeng LW, Liu GD. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–8.CrossRef Mao X, Ma YQ, Zhang AG, Zhang LR, Zeng LW, Liu GD. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–8.CrossRef
50.
go back to reference Ge CC, LX Y, Fang ZY, Zeng LW. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRef Ge CC, LX Y, Fang ZY, Zeng LW. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.CrossRef
51.
go back to reference Xiao Z, Lie PC, Fang ZY, LX Y, Chen JH, Liu J, et al. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Chem Commun. 2012;48(68):8547–9.CrossRef Xiao Z, Lie PC, Fang ZY, LX Y, Chen JH, Liu J, et al. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Chem Commun. 2012;48(68):8547–9.CrossRef
52.
go back to reference Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.CrossRef Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.CrossRef
53.
go back to reference Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6.CrossRef Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 2000;288(5463):113–6.CrossRef
54.
go back to reference Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin LW. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14(19):3790–9.CrossRef Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin LW. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14(19):3790–9.CrossRef
55.
go back to reference Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, et al. Preparation and hybridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nat Biotechnol. 1998;16(6):541–6.CrossRef Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, et al. Preparation and hybridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nat Biotechnol. 1998;16(6):541–6.CrossRef
56.
go back to reference Cady NC, Stelick S, Batt CA. Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron. 2003;19(1):59–66.CrossRef Cady NC, Stelick S, Batt CA. Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron. 2003;19(1):59–66.CrossRef
57.
go back to reference Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, et al. Microchip-based purification of DNA from biological samples. Anal Chem. 2003;75(8):1880–6.CrossRef Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, et al. Microchip-based purification of DNA from biological samples. Anal Chem. 2003;75(8):1880–6.CrossRef
58.
go back to reference Azimi SM, Nixon G, Ahern J, Balachandran W. A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid Nanofluid. 2011;11(2):157–65.CrossRef Azimi SM, Nixon G, Ahern J, Balachandran W. A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid Nanofluid. 2011;11(2):157–65.CrossRef
59.
go back to reference Duarte GRM, Price CW, Littlewood JL, Haverstick DM, Ferrance JP, Carrilho E, et al. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst. 2010;135(3):531–7.CrossRef Duarte GRM, Price CW, Littlewood JL, Haverstick DM, Ferrance JP, Carrilho E, et al. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst. 2010;135(3):531–7.CrossRef
60.
go back to reference Nakagawa T, Tanaka T, Niwa D, Osaka T, Takeyama H, Matsunaga T. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol. 2005;116(2):105–11.CrossRef Nakagawa T, Tanaka T, Niwa D, Osaka T, Takeyama H, Matsunaga T. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol. 2005;116(2):105–11.CrossRef
61.
go back to reference Cao WD, Easley CJ, Ferrance JP, Landers JP. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem. 2006;78(20):7222–8.CrossRef Cao WD, Easley CJ, Ferrance JP, Landers JP. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem. 2006;78(20):7222–8.CrossRef
62.
go back to reference Elgort MG, Herrmann MG, Erali M, Durtschi JD, Voelkerding KV, Smith RE. Extraction and amplification of genomic DNA from human blood on nanoporous aluminum oxide membranes. Clin Chem. 2004;50(10):1817–9.CrossRef Elgort MG, Herrmann MG, Erali M, Durtschi JD, Voelkerding KV, Smith RE. Extraction and amplification of genomic DNA from human blood on nanoporous aluminum oxide membranes. Clin Chem. 2004;50(10):1817–9.CrossRef
63.
go back to reference Kim J, Voelkerding KV, Gale BK. Patterning of a nanoporous membrane for multi-sample DNA extraction. J Micromech Microeng. 2006;16(1):33–9.CrossRef Kim J, Voelkerding KV, Gale BK. Patterning of a nanoporous membrane for multi-sample DNA extraction. J Micromech Microeng. 2006;16(1):33–9.CrossRef
64.
go back to reference Kim J, Voelkerding KV, Gale BK. IEEE Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure. New York: IEEE; 2005. p. 5–7. Kim J, Voelkerding KV, Gale BK. IEEE Multi-DNA extraction chip based on an aluminum oxide membrane integrated into a PDMS microfluidic structure. New York: IEEE; 2005. p. 5–7.
65.
go back to reference Kim J, Gale BK. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlOx membrane. Lab Chip. 2008;8(9):1516–23.CrossRef Kim J, Gale BK. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlOx membrane. Lab Chip. 2008;8(9):1516–23.CrossRef
66.
go back to reference Jangam SR, Yamada DH, McFall SM, Kelso DM. Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol. 2009;47(8):2363–8.CrossRef Jangam SR, Yamada DH, McFall SM, Kelso DM. Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol. 2009;47(8):2363–8.CrossRef
67.
go back to reference Kim J, Mauk M, Chen DF, Qiu XB, Gale B, Bau HH. A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst. 2010;135(9):2408–14.CrossRef Kim J, Mauk M, Chen DF, Qiu XB, Gale B, Bau HH. A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst. 2010;135(9):2408–14.CrossRef
68.
go back to reference Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 1996;24(2):375–9.CrossRef Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 1996;24(2):375–9.CrossRef
69.
go back to reference Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .2. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res. 1996;24(2):380–5.CrossRef Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P. Chip PCR .2. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res. 1996;24(2):380–5.CrossRef
70.
go back to reference Chaudhari AM, Woudenberg TM, Albin M, Goodson KE. Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J Microelectromech Syst. 1998;7(4):345–55.CrossRef Chaudhari AM, Woudenberg TM, Albin M, Goodson KE. Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J Microelectromech Syst. 1998;7(4):345–55.CrossRef
71.
go back to reference Wilding P, Shoffner MA, Kricka LJPCR. in a silicon microstructure. Clin Chem. 1994;40(9):1815–8. Wilding P, Shoffner MA, Kricka LJPCR. in a silicon microstructure. Clin Chem. 1994;40(9):1815–8.
72.
go back to reference Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R, et al. Infectious disease - PCR detection of bacteria in seven minutes. Science. 1999;284(5413):449–50.CrossRef Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R, et al. Infectious disease - PCR detection of bacteria in seven minutes. Science. 1999;284(5413):449–50.CrossRef
73.
go back to reference Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrom T, et al. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal Chem. 2004;76(1):9–14.CrossRef Gulliksen A, Solli L, Karlsen F, Rogne H, Hovig E, Nordstrom T, et al. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal Chem. 2004;76(1):9–14.CrossRef
74.
go back to reference Pak N, Saunders DC, Phaneuf CR, Forest CR. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip. Biomed Microdevices. 2012;14(2):427–33.CrossRef Pak N, Saunders DC, Phaneuf CR, Forest CR. Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip. Biomed Microdevices. 2012;14(2):427–33.CrossRef
75.
go back to reference Lounsbury JA, Karlsson A, Miranian DC, Cronk SM, Nelson DA, Li JY, et al. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip. 2013;13(7):1384–93.CrossRef Lounsbury JA, Karlsson A, Miranian DC, Cronk SM, Nelson DA, Li JY, et al. From sample to PCR product in under 45 minutes: a polymeric integrated microdevice for clinical and forensic DNA analysis. Lab Chip. 2013;13(7):1384–93.CrossRef
76.
go back to reference Kopp MU, de Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.CrossRef Kopp MU, de Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.CrossRef
77.
go back to reference Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T. High-speed polymerase chain-reaction in constant flow. Biosci Biotechnol Biochem. 1994;58(2):349–52.CrossRef Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T. High-speed polymerase chain-reaction in constant flow. Biosci Biotechnol Biochem. 1994;58(2):349–52.CrossRef
78.
go back to reference Mohr S, Zhang YH, Macaskill A, Day PJR, Barber RW, Goddard NJ, et al. Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluid. 2007;3(5):611–21.CrossRef Mohr S, Zhang YH, Macaskill A, Day PJR, Barber RW, Goddard NJ, et al. Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluid. 2007;3(5):611–21.CrossRef
79.
go back to reference Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem. 2008;80(6):1854–8.CrossRef Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, et al. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem. 2008;80(6):1854–8.CrossRef
80.
go back to reference Carson S, Cohen AS, Belenkii A, Ruizmartinez MC, Berka J, Karger BL. DNA-sequencing by capillary electrophoresis - use of a 2-laser 2-window intensified diode-array detection system. Anal Chem. 1993;65(22):3219–26.CrossRef Carson S, Cohen AS, Belenkii A, Ruizmartinez MC, Berka J, Karger BL. DNA-sequencing by capillary electrophoresis - use of a 2-laser 2-window intensified diode-array detection system. Anal Chem. 1993;65(22):3219–26.CrossRef
81.
go back to reference Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science. 1993;261(5123):895–7.CrossRef Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science. 1993;261(5123):895–7.CrossRef
82.
go back to reference Woolley AT, Mathies RA. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci U S A. 1994;91(24):11348–52.CrossRef Woolley AT, Mathies RA. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci U S A. 1994;91(24):11348–52.CrossRef
83.
go back to reference Woolley AT, Mathies RA. Ultra-high-speed DNA-sequencing using capillary electrophoresis chips. Anal Chem. 1995;67(20):3676–80.CrossRef Woolley AT, Mathies RA. Ultra-high-speed DNA-sequencing using capillary electrophoresis chips. Anal Chem. 1995;67(20):3676–80.CrossRef
84.
go back to reference Emrich CA, Tian HJ, Medintz IL, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem. 2002;74(19):5076–83.CrossRef Emrich CA, Tian HJ, Medintz IL, Mathies RA. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem. 2002;74(19):5076–83.CrossRef
85.
go back to reference Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A. 2002;99(2):574–9.CrossRef Paegel BM, Emrich CA, Wedemayer GJ, Scherer JR, Mathies RA. High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc Natl Acad Sci U S A. 2002;99(2):574–9.CrossRef
86.
go back to reference Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis. Anal Chem. 2009;81(1):210–7.CrossRef Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis. Anal Chem. 2009;81(1):210–7.CrossRef
87.
go back to reference Liu P, Greenspoon SA, Yeung SHI, Scherer JR, Mathies RA. Integrated Sample Cleanup and Microchip Capillary Array Electrophoresis for High-Performance Forensic STR Profiling. In: Alonso A, editor. DNA Electrophoresis Protocols for Forensic Genetics. Methods in Molecular Biology. 830: Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA; 2012. pp. 351–65. Liu P, Greenspoon SA, Yeung SHI, Scherer JR, Mathies RA. Integrated Sample Cleanup and Microchip Capillary Array Electrophoresis for High-Performance Forensic STR Profiling. In: Alonso A, editor. DNA Electrophoresis Protocols for Forensic Genetics. Methods in Molecular Biology. 830: Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512–1165 USA; 2012. pp. 351–65.
88.
go back to reference Song LG, Fang DF, Kobos RK, Pace SJ, Chu B. Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium. Electrophoresis. 1999;20(14):2847–55.CrossRef Song LG, Fang DF, Kobos RK, Pace SJ, Chu B. Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium. Electrophoresis. 1999;20(14):2847–55.CrossRef
89.
go back to reference Hsiung SK, Lin CH, Lee GB. A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection. Electrophoresis. 2005;26(6):1122–9.CrossRef Hsiung SK, Lin CH, Lee GB. A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection. Electrophoresis. 2005;26(6):1122–9.CrossRef
90.
go back to reference Koesdjojo MT, Tennico YH, Reincho VT. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Anal Chem. 2008;80(7):2311–8.CrossRef Koesdjojo MT, Tennico YH, Reincho VT. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Anal Chem. 2008;80(7):2311–8.CrossRef
91.
go back to reference Liu YJ, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem. 2001;73(17):4196–201.CrossRef Liu YJ, Ganser D, Schneider A, Liu R, Grodzinski P, Kroutchinina N. Microfabricated polycarbonate CE devices for DNA analysis. Anal Chem. 2001;73(17):4196–201.CrossRef
92.
go back to reference Ye MY, Yin XF, Fang ZL. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips. Anal Bioanal Chem. 2005;381(4):820–7.CrossRef Ye MY, Yin XF, Fang ZL. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips. Anal Bioanal Chem. 2005;381(4):820–7.CrossRef
93.
go back to reference Shi YN, Anderson RC. High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels. Electrophoresis. 2003;24(19–20):3371–7.CrossRef Shi YN, Anderson RC. High-resolution single-stranded DNA analysis on 4.5 cm plastic electrophoretic microchannels. Electrophoresis. 2003;24(19–20):3371–7.CrossRef
94.
go back to reference Shi YN. DNA sequencing and multiplex STR analysis on plastic microfluidic devices. Electrophoresis. 2006;27(19):3703–11.CrossRef Shi YN. DNA sequencing and multiplex STR analysis on plastic microfluidic devices. Electrophoresis. 2006;27(19):3703–11.CrossRef
95.
go back to reference Hurth C, Gu J, Aboud M, Estes MD, Nordquist AR, McCord B, et al. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis. 2012;33(16):2604–11.CrossRef Hurth C, Gu J, Aboud M, Estes MD, Nordquist AR, McCord B, et al. Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis. 2012;33(16):2604–11.CrossRef
96.
go back to reference Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, et al. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci. 2006;103(51):19272–7.CrossRef Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldman SH, et al. A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability. Proc Natl Acad Sci. 2006;103(51):19272–7.CrossRef
97.
go back to reference Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, et al. Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem. 2010;82(24):10102–9.CrossRef Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, et al. Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem. 2010;82(24):10102–9.CrossRef
98.
go back to reference Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem. 2007;79(5):1881–9.CrossRef Liu P, Seo TS, Beyor N, Shin KJ, Scherer JR, Mathies RA. Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing. Anal Chem. 2007;79(5):1881–9.CrossRef
99.
go back to reference Liu P, Yeung SHI, Crenshaw KA, Crouse CA, Scherer JR, Mathies RA. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. Forensic Sci Int-Genet. 2008;2(4):301–9.CrossRef Liu P, Yeung SHI, Crenshaw KA, Crouse CA, Scherer JR, Mathies RA. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. Forensic Sci Int-Genet. 2008;2(4):301–9.CrossRef
100.
go back to reference Beyor N, Yi LN, Seo TS, Mathies RA. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem. 2009;81(9):3523–8.CrossRef Beyor N, Yi LN, Seo TS, Mathies RA. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal Chem. 2009;81(9):3523–8.CrossRef
101.
go back to reference Liu P, Li X, Greenspoon SA, Scherer JR, Mathies RA. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11(6):1041–8.CrossRef Liu P, Li X, Greenspoon SA, Scherer JR, Mathies RA. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip. 2011;11(6):1041–8.CrossRef
102.
go back to reference Bienvenue JM, Legendre LA, Ferrance JP, Landers JP. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int-Genet. 2010;4(3):178–86.CrossRef Bienvenue JM, Legendre LA, Ferrance JP, Landers JP. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int-Genet. 2010;4(3):178–86.CrossRef
103.
go back to reference Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip. 2001;1(2):102–7.CrossRef Lagally ET, Emrich CA, Mathies RA. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip. 2001;1(2):102–7.CrossRef
104.
go back to reference Shaw KJ, Joyce DA, Docker PT, Dyer CE, Greenway GM, Greenman J, et al. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip. 2011;11(3):443–8.CrossRef Shaw KJ, Joyce DA, Docker PT, Dyer CE, Greenway GM, Greenman J, et al. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip. 2011;11(3):443–8.CrossRef
105.
go back to reference Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem. 2010;82(6):2372–9.CrossRef Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem. 2010;82(6):2372–9.CrossRef
106.
go back to reference Scherer JR, Liu P, Mathies RA. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis. Rev Sci Instrum 2010;81(11). Scherer JR, Liu P, Mathies RA. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis. Rev Sci Instrum 2010;81(11).
107.
go back to reference Tae Seok S, Xiaopeng B, Dae Hyun K, Qinglin M, Shundi S, Ruparel H, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci U S A. 2005;102(17):5926–31.CrossRef Tae Seok S, Xiaopeng B, Dae Hyun K, Qinglin M, Shundi S, Ruparel H, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc Natl Acad Sci U S A. 2005;102(17):5926–31.CrossRef
108.
go back to reference Xianbo Q, Dafeng C, Changchun L, Mauk MG, Kientz T, Bau HH. A portable, integrated analyzer for microfluidic - based molecular analysis. Biomed Microdevices. 2011;13(5):809–17.CrossRef Xianbo Q, Dafeng C, Changchun L, Mauk MG, Kientz T, Bau HH. A portable, integrated analyzer for microfluidic - based molecular analysis. Biomed Microdevices. 2011;13(5):809–17.CrossRef
109.
go back to reference Kim TH, Park J, Kim CJ, Cho YK. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem. 2014;86(8):3841–8.CrossRef Kim TH, Park J, Kim CJ, Cho YK. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem. 2014;86(8):3841–8.CrossRef
110.
go back to reference Raja S, Ching J, Xi LQ, Hughes SJ, Chang R, Wong W, et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin Chem. 2005;51(5):882–90.CrossRef Raja S, Ching J, Xi LQ, Hughes SJ, Chang R, Wong W, et al. Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin Chem. 2005;51(5):882–90.CrossRef
111.
go back to reference Tan E, Turingan RS, Hogan C, Vasantgadkar S, Palombo L, Schumm JW, et al. Fully integrated, fully automated generation of short tandem repeat profiles. Investig Genet. 2013;4(1):16.CrossRef Tan E, Turingan RS, Hogan C, Vasantgadkar S, Palombo L, Schumm JW, et al. Fully integrated, fully automated generation of short tandem repeat profiles. Investig Genet. 2013;4(1):16.CrossRef
Metadata
Title
Introduction
Author
Bin Zhuang
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4753-4_1