Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2022

31-05-2022 | Technical Article

Investigation of the Crevice Corrosion Behavior of 316L Stainless Steel in Sulfate-Reducing Bacteria-Inoculated Artificial Seawater Using the Wire Beam Electrode

Authors: Zhan Zhang, Cong Wu, Zhaopeng Wang, Jiuyang Xia, Bowei Zhang, Junsheng Wu

Published in: Journal of Materials Engineering and Performance | Issue 12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The crevice corrosion behavior of 316L stainless steel in the SRB-inoculated artificial seawater was investigated in the present study. A crevice former, modified by the wire beam electrode, was used to study the corrosion potential–current distribution within the crevice. Electrochemical impedance spectroscopy was used to evaluate the corrosion resistance in different crevice regions. The composition of the corrosion products was analyzed by x-ray photoelectron spectroscopy. The results demonstrate that the SRB’s distribution within the crevice was uneven. SRB attachment and survival were more difficult with increasing distance from the crevice mouth. The corrosion preferentially occurred in the crevice bottom in the SRB-inoculated artificial seawater. Subsequently, the crevice inner covered with the incomplete biofilm also suffered serious corrosion. And the corrosion products contained FeS2, resulting in a decrease in the protective performance of the passive film. Therefore, corrosion is equally serious in the crevice inner and bottom under the synergistic effect of the microbial factors and crevice factors.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Zheng, K. Li, H. Liu, and T. Gu, Effects of Magnetic Fields on Microbiologically Influenced Corrosion of 304 Stainless Steel, Ind. Eng. Chem. Res., 2014, 53(1), p 48–54.CrossRef B. Zheng, K. Li, H. Liu, and T. Gu, Effects of Magnetic Fields on Microbiologically Influenced Corrosion of 304 Stainless Steel, Ind. Eng. Chem. Res., 2014, 53(1), p 48–54.CrossRef
2.
go back to reference Z. Zhang, W. Rong, J. Wu, T. Zhang, Y. Wang, K. Huang, B. Zhang, and Y. He, Direct Preparation of Nanostructured Ni Coatings on Aluminium Alloy 6061 by Cathode Plasma Electrolytic Deposition, Surf. Coatings Technol., 2019, 370(4), p 130–135.CrossRef Z. Zhang, W. Rong, J. Wu, T. Zhang, Y. Wang, K. Huang, B. Zhang, and Y. He, Direct Preparation of Nanostructured Ni Coatings on Aluminium Alloy 6061 by Cathode Plasma Electrolytic Deposition, Surf. Coatings Technol., 2019, 370(4), p 130–135.CrossRef
3.
go back to reference P.T. Jakobsen and E. Maahn, Temperature and Potential Dependence of Crevice Corrosion of AISI 316 Stainless Steel, Corros. Sci., 2001, 43(9), p 1693–1709.CrossRef P.T. Jakobsen and E. Maahn, Temperature and Potential Dependence of Crevice Corrosion of AISI 316 Stainless Steel, Corros. Sci., 2001, 43(9), p 1693–1709.CrossRef
4.
go back to reference D. Sridharan, C. Karthikeyan, S. Maruthamuthu, S. Manoharan, and N. Palaniswamy, Impact of Mixed Inhibitor on Electrochemical Behavior of Inland Water Biofilm Formed on 316L Stainless Steel, Ind. Eng. Chem. Res., 2013, 52(46), p 16175–16181.CrossRef D. Sridharan, C. Karthikeyan, S. Maruthamuthu, S. Manoharan, and N. Palaniswamy, Impact of Mixed Inhibitor on Electrochemical Behavior of Inland Water Biofilm Formed on 316L Stainless Steel, Ind. Eng. Chem. Res., 2013, 52(46), p 16175–16181.CrossRef
5.
go back to reference D. Han, Y.M. Jiang, C. Shi, B. Deng, and J. Li, Effect of Temperature, Chloride Ion and PH on the Crevice Corrosion Behavior of SAF 2205 Duplex Stainless Steel in Chloride Solutions, J. Mater. Sci., 2012, 47(2), p 1018–1025.CrossRef D. Han, Y.M. Jiang, C. Shi, B. Deng, and J. Li, Effect of Temperature, Chloride Ion and PH on the Crevice Corrosion Behavior of SAF 2205 Duplex Stainless Steel in Chloride Solutions, J. Mater. Sci., 2012, 47(2), p 1018–1025.CrossRef
6.
go back to reference D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80(4), p 1226–1236.CrossRef D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80(4), p 1226–1236.CrossRef
7.
go back to reference R. Jia, D. Yang, J. Xu, D. Xu, and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas Aeruginosa Biofilm under Organic Carbon Starvation, Corros. Sci., 2017, 127(7), p 1–9.CrossRef R. Jia, D. Yang, J. Xu, D. Xu, and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas Aeruginosa Biofilm under Organic Carbon Starvation, Corros. Sci., 2017, 127(7), p 1–9.CrossRef
8.
go back to reference H. Venzlaff, D. Enning, J. Srinivasan, K.J.J. Mayrhofer, A.W. Hassel, F. Widdel, and M. Stratmann, Accelerated Cathodic Reaction in Microbial Corrosion of Iron Due to Direct Electron Uptake by Sulfate-Reducing Bacteria, Corros. Sci., 2013, 66, p 88–96.CrossRef H. Venzlaff, D. Enning, J. Srinivasan, K.J.J. Mayrhofer, A.W. Hassel, F. Widdel, and M. Stratmann, Accelerated Cathodic Reaction in Microbial Corrosion of Iron Due to Direct Electron Uptake by Sulfate-Reducing Bacteria, Corros. Sci., 2013, 66, p 88–96.CrossRef
9.
go back to reference T. Wu, J. Xu, C. Sun, M. Yan, C. Yu, and W. Ke, Microbiological Corrosion of Pipeline Steel under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef T. Wu, J. Xu, C. Sun, M. Yan, C. Yu, and W. Ke, Microbiological Corrosion of Pipeline Steel under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.CrossRef
10.
go back to reference F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, and B. Hou, Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy, Surf. Coatings Technol., 2017, 316, p 171–179.CrossRef F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, and B. Hou, Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy, Surf. Coatings Technol., 2017, 316, p 171–179.CrossRef
11.
go back to reference M. Taleb-Berrouane, F. Khan, K. Hawboldt, R. Eckert, and T.L. Skovhus, Model for Microbiologically Influenced Corrosion Potential Assessment for the Oil and Gas Industry, Corros. Eng. Sci. Technol., 2018, 53(5), p 378–392.CrossRef M. Taleb-Berrouane, F. Khan, K. Hawboldt, R. Eckert, and T.L. Skovhus, Model for Microbiologically Influenced Corrosion Potential Assessment for the Oil and Gas Industry, Corros. Eng. Sci. Technol., 2018, 53(5), p 378–392.CrossRef
12.
go back to reference K. Huang, D. Peng, Z. Yao, J. Xia, B. Zhang, H. Liu, Z. Chen, F. Wu, J. Wu, and Y. Huang, Cathodic Plasma Driven Self-Assembly of HEAs Dendrites by Pure Single FCC FeCoNiMnCu Nanoparticles as High Efficient Electrocatalysts for OER, Chem. Eng. J., 2021, 425(8), p 131533–131539.CrossRef K. Huang, D. Peng, Z. Yao, J. Xia, B. Zhang, H. Liu, Z. Chen, F. Wu, J. Wu, and Y. Huang, Cathodic Plasma Driven Self-Assembly of HEAs Dendrites by Pure Single FCC FeCoNiMnCu Nanoparticles as High Efficient Electrocatalysts for OER, Chem. Eng. J., 2021, 425(8), p 131533–131539.CrossRef
13.
go back to reference L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du, and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 174(4), p 108842–108852.CrossRef L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du, and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 174(4), p 108842–108852.CrossRef
14.
go back to reference S. Yuan, B. Liang, Y. Zhao, and S.O. Pehkonen, Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater Containing Inorganic Sulphide and Sulphate-Reducing Bacteria, Corros. Sci., 2013, 74, p 353–366.CrossRef S. Yuan, B. Liang, Y. Zhao, and S.O. Pehkonen, Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater Containing Inorganic Sulphide and Sulphate-Reducing Bacteria, Corros. Sci., 2013, 74, p 353–366.CrossRef
15.
go back to reference X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du, and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 173(12), p 108746–108763.CrossRef X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du, and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 173(12), p 108746–108763.CrossRef
16.
go back to reference T. Gu, R. Jia, T. Unsal, and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35(4), p 631–636.CrossRef T. Gu, R. Jia, T. Unsal, and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35(4), p 631–636.CrossRef
17.
go back to reference W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen, and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium under Carbon Source Starvation, Corros. Sci., 2019, 150(10), p 258–267.CrossRef W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen, and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium under Carbon Source Starvation, Corros. Sci., 2019, 150(10), p 258–267.CrossRef
18.
go back to reference H. Liu, T. Gu, G. Zhang, H. Liu, and Y.F. Cheng, Corrosion of X80 Pipeline Steel under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136(12), p 47–59.CrossRef H. Liu, T. Gu, G. Zhang, H. Liu, and Y.F. Cheng, Corrosion of X80 Pipeline Steel under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136(12), p 47–59.CrossRef
19.
go back to reference T. Černoušek, R. Shrestha, H. Kovářová, R. Špánek, A. Ševců, K. Sihelská, J. Kokinda, J. Stoulil, and J. Steinová, Microbially Influenced Corrosion of Carbon Steel in the Presence of Anaerobic Sulphate-Reducing Bacteria, Corros. Eng. Sci. Technol., 2020, 55(2), p 127–137.CrossRef T. Černoušek, R. Shrestha, H. Kovářová, R. Špánek, A. Ševců, K. Sihelská, J. Kokinda, J. Stoulil, and J. Steinová, Microbially Influenced Corrosion of Carbon Steel in the Presence of Anaerobic Sulphate-Reducing Bacteria, Corros. Eng. Sci. Technol., 2020, 55(2), p 127–137.CrossRef
20.
go back to reference D. Xu and T. Gu, Carbon Source Starvation Triggered More Aggressive Corrosion against Carbon Steel by the Desulfovibrio Vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef D. Xu and T. Gu, Carbon Source Starvation Triggered More Aggressive Corrosion against Carbon Steel by the Desulfovibrio Vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.CrossRef
21.
go back to reference J. Xu, C. Sun, M. Yan, and F. Wang, Electrochemical Behavior of Steel A36 under Disbonded Coating in the Presence of Sulfate-Reducing Bacteria, Mater. Chem. Phys., 2013, 142(2–3), p 692–700.CrossRef J. Xu, C. Sun, M. Yan, and F. Wang, Electrochemical Behavior of Steel A36 under Disbonded Coating in the Presence of Sulfate-Reducing Bacteria, Mater. Chem. Phys., 2013, 142(2–3), p 692–700.CrossRef
22.
go back to reference W. Shi, T.Z. Wang, Z.H. Dong, and X.P. Guo, Application of Wire Beam Electrode Technique to Investigate the Migrating Behavior of Corrosion Inhibitors in Mortar, Constr. Build. Mater., 2017, 134, p 167–175.CrossRef W. Shi, T.Z. Wang, Z.H. Dong, and X.P. Guo, Application of Wire Beam Electrode Technique to Investigate the Migrating Behavior of Corrosion Inhibitors in Mortar, Constr. Build. Mater., 2017, 134, p 167–175.CrossRef
23.
go back to reference Q. Zhong, Study of Corrosion Behaviour of Mild Steel and Copper in Thin Film Salt Solution Using the Wire Beam Electrode, Corros. Sci., 2002, 44(5), p 909–916.CrossRef Q. Zhong, Study of Corrosion Behaviour of Mild Steel and Copper in Thin Film Salt Solution Using the Wire Beam Electrode, Corros. Sci., 2002, 44(5), p 909–916.CrossRef
24.
go back to reference Y.J. Tan, An Experimental Comparison of Three Wire Beam Electrode Based Methods for Determining Corrosion Rates and Patterns, Corros. Sci., 2005, 47(7), p 1653–1665.CrossRef Y.J. Tan, An Experimental Comparison of Three Wire Beam Electrode Based Methods for Determining Corrosion Rates and Patterns, Corros. Sci., 2005, 47(7), p 1653–1665.CrossRef
25.
go back to reference J. Xia, K. Huang, Z. Yao, B. Zhang, S. Li, Z. Chen, F. Wu, J. Wu, and Y. Huang, Ternary Duplex FeCoNi Alloy Prepared by Cathode Plasma Electrolytic Deposition as a High-Efficient Electrocatalyst for Oxygen Evolution Reaction, J. Alloys Compd., 2022, 891, p 161934–161942.CrossRef J. Xia, K. Huang, Z. Yao, B. Zhang, S. Li, Z. Chen, F. Wu, J. Wu, and Y. Huang, Ternary Duplex FeCoNi Alloy Prepared by Cathode Plasma Electrolytic Deposition as a High-Efficient Electrocatalyst for Oxygen Evolution Reaction, J. Alloys Compd., 2022, 891, p 161934–161942.CrossRef
26.
go back to reference J. Li, Z. Liu, C. Du, and X. Li, Revealing Bioinorganic Interface in Microbiologically Influenced Corrosion with FIB-SEM/TEM, Corros. Sci., 2020, 173(4), p 108763–108770.CrossRef J. Li, Z. Liu, C. Du, and X. Li, Revealing Bioinorganic Interface in Microbiologically Influenced Corrosion with FIB-SEM/TEM, Corros. Sci., 2020, 173(4), p 108763–108770.CrossRef
27.
go back to reference W. Shi, Z.H. Dong, D.J. Kong, and X.P. Guo, Application of Wire Beam Electrode Technique to Investigate Initiation and Propagation of Rebar Corrosion, Cem. Concr. Res., 2013, 48, p 25–33.CrossRef W. Shi, Z.H. Dong, D.J. Kong, and X.P. Guo, Application of Wire Beam Electrode Technique to Investigate Initiation and Propagation of Rebar Corrosion, Cem. Concr. Res., 2013, 48, p 25–33.CrossRef
28.
go back to reference Y.J. Tan, S. Bailey, and B. Kinsella, Mapping Non-Uniform Corrosion Using the Wire Beam Electrode Method II Crevice Corrosion and Crevice Corrosion Exemption, Corros. Sci., 2001, 43(10), p 1919–1929.CrossRef Y.J. Tan, S. Bailey, and B. Kinsella, Mapping Non-Uniform Corrosion Using the Wire Beam Electrode Method II Crevice Corrosion and Crevice Corrosion Exemption, Corros. Sci., 2001, 43(10), p 1919–1929.CrossRef
29.
go back to reference N.N. Aung and Y.J. Tan, Monitoring Pitting-Crevice Corrosion Using the WBE-Noise Signatures Method, Mater. Corros., 2006, 57(7), p 555–561.CrossRef N.N. Aung and Y.J. Tan, Monitoring Pitting-Crevice Corrosion Using the WBE-Noise Signatures Method, Mater. Corros., 2006, 57(7), p 555–561.CrossRef
30.
go back to reference J. Xu, C. Sun, M. Yan, and F. Wang, Variations of Microenvironments with and without SRB for Steel Q 235 under a Simulated Disbonded Coating, Ind. Eng. Chem. Res., 2013, 52(36), p 12838–12845.CrossRef J. Xu, C. Sun, M. Yan, and F. Wang, Variations of Microenvironments with and without SRB for Steel Q 235 under a Simulated Disbonded Coating, Ind. Eng. Chem. Res., 2013, 52(36), p 12838–12845.CrossRef
31.
go back to reference J. Liao, H. Fukui, T. Urakami, and H. Morisaki, Effect of Biofilm on Ennoblement and Localized Corrosion of Stainless Steel in Fresh Dam-Water, Corros. Sci., 2010, 52(4), p 1393–1403.CrossRef J. Liao, H. Fukui, T. Urakami, and H. Morisaki, Effect of Biofilm on Ennoblement and Localized Corrosion of Stainless Steel in Fresh Dam-Water, Corros. Sci., 2010, 52(4), p 1393–1403.CrossRef
32.
go back to reference B. Wei, J. Xu, Q. Fu, Q. Qin, Y. Bai, C. Sun, C. Wang, Z. Wang, and W. Ke, Effect of Sulfate-Reducing Bacteria on Corrosion of X80 Pipeline Steel under Disbonded Coating in a Red Soil Solution, J. Mater. Sci. Technol., 2021, 87, p 1–17.CrossRef B. Wei, J. Xu, Q. Fu, Q. Qin, Y. Bai, C. Sun, C. Wang, Z. Wang, and W. Ke, Effect of Sulfate-Reducing Bacteria on Corrosion of X80 Pipeline Steel under Disbonded Coating in a Red Soil Solution, J. Mater. Sci. Technol., 2021, 87, p 1–17.CrossRef
33.
go back to reference Z. Zhang, T. Fang, J. Xia, B. Zhang, and J. Wu, Distribution of Sulfate-Reducing Bacteria in the Crevice and Its Effect on the Initial Corrosion Behavior of 2205 Stainless Steel in Artificial Seawater, Mater. Corros., 2021, 9, p 1–12. Z. Zhang, T. Fang, J. Xia, B. Zhang, and J. Wu, Distribution of Sulfate-Reducing Bacteria in the Crevice and Its Effect on the Initial Corrosion Behavior of 2205 Stainless Steel in Artificial Seawater, Mater. Corros., 2021, 9, p 1–12.
Metadata
Title
Investigation of the Crevice Corrosion Behavior of 316L Stainless Steel in Sulfate-Reducing Bacteria-Inoculated Artificial Seawater Using the Wire Beam Electrode
Authors
Zhan Zhang
Cong Wu
Zhaopeng Wang
Jiuyang Xia
Bowei Zhang
Junsheng Wu
Publication date
31-05-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07023-9

Other articles of this Issue 12/2022

Journal of Materials Engineering and Performance 12/2022 Go to the issue

Premium Partners