Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2019

24-08-2019

Investigation of the temperature-dependent electrical properties of Au/PEDOT:WO3/p-Si hybrid device

Authors: Mine Keskin, Abdullah Akkaya, Enise Ayyıldız, Ayşegül Uygun Öksüz, Mücella Özbay Karakuş

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrical properties of Au/PEDOT:WO3/p-Si hybrid devices were studied in terms of current–voltage (I–V) and capacitance–voltage (C–V) measurements. Poly (3,4-ethylene dioxythiophene/tungsten trioxide (PEDOT:WO3) composite was prepared by an in situ chemical oxidative polymerization of monomer in 1-butyl-3-methylimidazoliumtetrafluoroborate (BMIMBF4). Optical and structural properties of the PEDOT:WO3 thin film was characterized by using FTIR, UV–Vis and AFM techniques. The bandgap energy of PEDOT:WO3 thin film was determined as 2.07 eV from UV–Vis spectrum. It was seen that the IV plots of the Au/PEDOT:WO3/p-Si hybrid devices were non-linear and C2V plots were linear in the reverse bias defining rectification behavior. The values of barrier height obtained from the IV and C2V plots of the fabricated devices were found to be 0.729 ± 0.012 eV and 0.817 ± 0.011 eV at room temperature in the dark environment, respectively. Devices have a high rectification behavior with a rectification ratio of 3.645 × 105 at ± 1 V. The temperature-dependent IV characteristics of one of the devices were also analyzed on the basis of the thermionic emission theory at low forward bias voltage regime. It was observed that the values of ideality factor decrease while the values of barrier height increase with increasing temperature. This kind of temperature dependence was attributed to the presence of the barrier inhomogeneity at the hybrid film/inorganic semiconductor interface. Then, by analysing of the forward bias IV characteristics at double logarithmic scale, it was seen that the carrier transport in the Au/PEDOT:WO3/p-Si hybrid device demonstrates the space-charge-limited current (SCLC) conduction mechanism controlled by a trap distribution above the valence band edge dominates in the range 0.1–0.3 V voltages. Furthermore, by analyzing the reverse bias IVT characteristics, it was shown that Schottky emission was the dominating current conduction mechanism in the temperature range of 240–320 K.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
4.
go back to reference H. Çetin, B. Boyarbay, A. Akkaya, A. Uygun, E. Ayyıldız, Synth. Met. 161, 2384–2389 (2011)CrossRef H. Çetin, B. Boyarbay, A. Akkaya, A. Uygun, E. Ayyıldız, Synth. Met. 161, 2384–2389 (2011)CrossRef
5.
go back to reference S. Aydoğan, M. Sağlam, A. Türüt, J Phys.-Condens. Mat. 18, 2665–2676 (2006)CrossRef S. Aydoğan, M. Sağlam, A. Türüt, J Phys.-Condens. Mat. 18, 2665–2676 (2006)CrossRef
6.
go back to reference H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. Woo, Science 290, 2123–2126 (2000)CrossRef H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. Woo, Science 290, 2123–2126 (2000)CrossRef
7.
go back to reference B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Appl. Phys. A 103, 89–96 (2011)CrossRef B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Appl. Phys. A 103, 89–96 (2011)CrossRef
8.
go back to reference V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13, 1604–1610 (2013)CrossRef V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13, 1604–1610 (2013)CrossRef
9.
go back to reference H. Peisert, T. Schwieger, J. Auerhammer, M. Knupfer, M. Golden, J. Fink, P. Bressler, M. Mast, J. Appl. Phys. 90, 466–469 (2001)CrossRef H. Peisert, T. Schwieger, J. Auerhammer, M. Knupfer, M. Golden, J. Fink, P. Bressler, M. Mast, J. Appl. Phys. 90, 466–469 (2001)CrossRef
10.
go back to reference A. Kumar, J. Brunet, C. Varenne, A. Ndiaye, A. Pauly, M. Penza, M. Alvisi, Sens. Actuators, B 210, 398–407 (2015)CrossRef A. Kumar, J. Brunet, C. Varenne, A. Ndiaye, A. Pauly, M. Penza, M. Alvisi, Sens. Actuators, B 210, 398–407 (2015)CrossRef
11.
go back to reference M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Org. Electron. 21, 86–91 (2015)CrossRef M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Org. Electron. 21, 86–91 (2015)CrossRef
12.
go back to reference X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Mater. Chem. Phys. 98, 241–247 (2006)CrossRef X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Mater. Chem. Phys. 98, 241–247 (2006)CrossRef
13.
go back to reference J. Wei, M. Cheong, N. Nagarajan, I. Zhitomirsky, ECS Trans. 3, 1–9 (2007)CrossRef J. Wei, M. Cheong, N. Nagarajan, I. Zhitomirsky, ECS Trans. 3, 1–9 (2007)CrossRef
14.
go back to reference D. Szymanska, I.A. Rutkowska, L. Adamczyk, S. Zoladek, P.J. Kulesza, J. Solid State Electrochem. 14, 2049–2056 (2010)CrossRef D. Szymanska, I.A. Rutkowska, L. Adamczyk, S. Zoladek, P.J. Kulesza, J. Solid State Electrochem. 14, 2049–2056 (2010)CrossRef
15.
go back to reference D. Yıldız, J. Mater. Sci. 29, 17802–17808 (2018) D. Yıldız, J. Mater. Sci. 29, 17802–17808 (2018)
16.
go back to reference B. Li, J. Chen, Y. Zhao, D. Yang, D. Ma, Org. Electron. 12, 974–979 (2011)CrossRef B. Li, J. Chen, Y. Zhao, D. Yang, D. Ma, Org. Electron. 12, 974–979 (2011)CrossRef
17.
go back to reference M. Deepa, A. Srivastava, K. Sood, A. Murugan, J. Electrochem. Soc. 155, D703–D710 (2008)CrossRef M. Deepa, A. Srivastava, K. Sood, A. Murugan, J. Electrochem. Soc. 155, D703–D710 (2008)CrossRef
18.
19.
go back to reference Y.H. Kim, S. Kwon, J.H. Lee, S.M. Park, Y.M. Lee, J.W. Kim, J. Phys. Chem. C 115, 6599–6604 (2011)CrossRef Y.H. Kim, S. Kwon, J.H. Lee, S.M. Park, Y.M. Lee, J.W. Kim, J. Phys. Chem. C 115, 6599–6604 (2011)CrossRef
20.
go back to reference W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Park Ridge, Westwood New Jersey, 1993) W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Park Ridge, Westwood New Jersey, 1993)
21.
go back to reference C. Dulgerbaki, N. Nohut Maslakci, A.I. Komur, A.U. Oksuz, Electroanal 28, 1873–1879 (2016)CrossRef C. Dulgerbaki, N. Nohut Maslakci, A.I. Komur, A.U. Oksuz, Electroanal 28, 1873–1879 (2016)CrossRef
22.
23.
go back to reference S.V. Selvaganesh, J. Mathiyarasu, K. Phani, V. Yegnaraman, Nanoscale Res. Lett. 2, 546 (2007)CrossRef S.V. Selvaganesh, J. Mathiyarasu, K. Phani, V. Yegnaraman, Nanoscale Res. Lett. 2, 546 (2007)CrossRef
25.
go back to reference Y. Lin, L. Huang, L. Chen, J. Zhang, L. Shen, Q. Chen, W. Shi, Sens. Actuators, B 216, 176–183 (2015)CrossRef Y. Lin, L. Huang, L. Chen, J. Zhang, L. Shen, Q. Chen, W. Shi, Sens. Actuators, B 216, 176–183 (2015)CrossRef
26.
go back to reference Z.A. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li, J. Phys. Chem. C 116, 18626–18632 (2012)CrossRef Z.A. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li, J. Phys. Chem. C 116, 18626–18632 (2012)CrossRef
28.
go back to reference J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRef J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRef
29.
go back to reference J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966)CrossRef J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966)CrossRef
30.
31.
go back to reference A. Arya, A. Sharma, J. Mater. Sci. 29, 17903–17920 (2018) A. Arya, A. Sharma, J. Mater. Sci. 29, 17903–17920 (2018)
33.
go back to reference J. Gurusiddappa, W. Madhuri, R.P. Suvarna, K.P. Dasan, Indian J. Adv. Chem. Sci. 4, 14–19 (2016) J. Gurusiddappa, W. Madhuri, R.P. Suvarna, K.P. Dasan, Indian J. Adv. Chem. Sci. 4, 14–19 (2016)
34.
35.
go back to reference S.B. Aziz, O.G. Abdullah, M.A. Rasheed, J. Mater. Sci. 28, 12873–12884 (2017) S.B. Aziz, O.G. Abdullah, M.A. Rasheed, J. Mater. Sci. 28, 12873–12884 (2017)
36.
go back to reference A. Jurkane, S. Gaidukov, Preparation and characterization of hot-pressed Li + ion conducting PEO composite electrolytes, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012016, 2016 A. Jurkane, S. Gaidukov, Preparation and characterization of hot-pressed Li + ion conducting PEO composite electrolytes, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012016, 2016
37.
go back to reference E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988) E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)
38.
go back to reference S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
39.
go back to reference F.E. Jones, C. Daniels-Hafer, B.P. Wood, R.G. Danner, M.C. Lonergan, J. Appl. Phys. 90, 1001 (2001)CrossRef F.E. Jones, C. Daniels-Hafer, B.P. Wood, R.G. Danner, M.C. Lonergan, J. Appl. Phys. 90, 1001 (2001)CrossRef
40.
go back to reference M. Kaya, H. Cetin, B. Boyarbay, A. Gok, E. Ayyildiz, J. Phys.-Condens. Mater. 19, 406205 (2007)CrossRef M. Kaya, H. Cetin, B. Boyarbay, A. Gok, E. Ayyildiz, J. Phys.-Condens. Mater. 19, 406205 (2007)CrossRef
41.
42.
43.
44.
go back to reference A. Akkaya, T. Karaaslan, M. Dede, H. Çetin, E. Ayyıldız, Thin Solid Films 564, 367–374 (2014)CrossRef A. Akkaya, T. Karaaslan, M. Dede, H. Çetin, E. Ayyıldız, Thin Solid Films 564, 367–374 (2014)CrossRef
45.
47.
go back to reference Y.P. Song, R.L. Vanmeirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633–638 (1986)CrossRef Y.P. Song, R.L. Vanmeirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633–638 (1986)CrossRef
48.
go back to reference E. Ayyildiz, H. Cetin, Z.J. Horváth, Appl. Surf. Sci. 252, 1153–1158 (2005)CrossRef E. Ayyildiz, H. Cetin, Z.J. Horváth, Appl. Surf. Sci. 252, 1153–1158 (2005)CrossRef
49.
50.
go back to reference A. Turut, M. Coșkun, F. Coșkun, O. Polat, Z. Durmuș, M. Çağlar, H. Efeoğlu, J. Alloy. Compd. 782, 566–575 (2019)CrossRef A. Turut, M. Coșkun, F. Coșkun, O. Polat, Z. Durmuș, M. Çağlar, H. Efeoğlu, J. Alloy. Compd. 782, 566–575 (2019)CrossRef
51.
go back to reference B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Thin Solid Films 518, 2216–2221 (2010)CrossRef B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Thin Solid Films 518, 2216–2221 (2010)CrossRef
52.
53.
go back to reference S.M. Sze, K.K. Ng, Metal-Semiconductor Contacts, Environ Sci Eng (John Wiley & Sons Inc, New Jersey, 2006), p. 832 S.M. Sze, K.K. Ng, Metal-Semiconductor Contacts, Environ Sci Eng (John Wiley & Sons Inc, New Jersey, 2006), p. 832
55.
go back to reference M.A. Lampert, R.B. Schilling, Current injection in solids: the regional approximation method. Semicond. Semimet. 6, 1–96 (1970)CrossRef M.A. Lampert, R.B. Schilling, Current injection in solids: the regional approximation method. Semicond. Semimet. 6, 1–96 (1970)CrossRef
56.
go back to reference M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 213 (2011) M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 213 (2011)
57.
go back to reference L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Met. 221, 169–175 (2016)CrossRef L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Met. 221, 169–175 (2016)CrossRef
58.
go back to reference S. Braun, W. Osikowicz, Y. Wang, W.R. Salaneck, Org. Electron. 8, 14–20 (2007)CrossRef S. Braun, W. Osikowicz, Y. Wang, W.R. Salaneck, Org. Electron. 8, 14–20 (2007)CrossRef
59.
go back to reference A.A. Kumar, V.R. Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, J. Alloy. Compd. 549, 18–21 (2013)CrossRef A.A. Kumar, V.R. Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, J. Alloy. Compd. 549, 18–21 (2013)CrossRef
Metadata
Title
Investigation of the temperature-dependent electrical properties of Au/PEDOT:WO3/p-Si hybrid device
Authors
Mine Keskin
Abdullah Akkaya
Enise Ayyıldız
Ayşegül Uygun Öksüz
Mücella Özbay Karakuş
Publication date
24-08-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02048-8

Other articles of this Issue 17/2019

Journal of Materials Science: Materials in Electronics 17/2019 Go to the issue