Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

12-04-2021

Investigation of Ti doping on the structural, optical, and magnetic properties of ZnO nanoparticles

Authors: P. Raji, K. Balachandra Kumar

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ti-doped ZnO (TixZn1-xO x = 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co-precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV–Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 to 29 nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples. PL spectra showed a near-band edge emission and visible emission. Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Dietl, Ferromagnetic semiconductors. Semicond. Sci. Technol. 17(4), 377–392 (2002) T. Dietl, Ferromagnetic semiconductors. Semicond. Sci. Technol. 17(4), 377–392 (2002)
2.
go back to reference H. Akinaga, H. Ohno, Semiconductor spintronics. IEEE Trans. Nanotechnol. 1(1), 19–31 (2002) H. Akinaga, H. Ohno, Semiconductor spintronics. IEEE Trans. Nanotechnol. 1(1), 19–31 (2002)
3.
go back to reference S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1–13 (2003) S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1–13 (2003)
4.
go back to reference I. Malajovich, J.J. Berry, N. Samarth, D.D. Awschalom, Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411(6839), 770–772 (2001) I. Malajovich, J.J. Berry, N. Samarth, D.D. Awschalom, Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411(6839), 770–772 (2001)
5.
go back to reference Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78(24), 3824–3826 (2001) Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78(24), 3824–3826 (2001)
6.
go back to reference K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79(7), 988–990 (2001) K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79(7), 988–990 (2001)
7.
go back to reference M. Ahmadipour, M. Hatami, H. Sadabadi, Magnetic property of Zn0.8CO0.2O diluted magnetic semiconductors by auto combustion method. Int. J. Curr. Eng. Technol. 3(1), 85 (2013) M. Ahmadipour, M. Hatami, H. Sadabadi, Magnetic property of Zn0.8CO0.2O diluted magnetic semiconductors by auto combustion method. Int. J. Curr. Eng. Technol. 3(1), 85 (2013)
8.
go back to reference Z. Yong, T. Liu, T. Uruga, H. Tanida, D. Qi, A. Rusydi, A.T. Wee, Ti-doped ZnO thin films prepared at different ambient conditions: electronic structures and magnetic properties. Materials 3(6), 3642–3653 (2010) Z. Yong, T. Liu, T. Uruga, H. Tanida, D. Qi, A. Rusydi, A.T. Wee, Ti-doped ZnO thin films prepared at different ambient conditions: electronic structures and magnetic properties. Materials 3(6), 3642–3653 (2010)
9.
go back to reference Q. Shao, C. Wang, J.A. Zapien, C.W. Leung, A. Ruotolo, Ferromagnetism in Ti-doped ZnO thin films. J. Appl. Phys. 117(17), 17B908 (2015) Q. Shao, C. Wang, J.A. Zapien, C.W. Leung, A. Ruotolo, Ferromagnetism in Ti-doped ZnO thin films. J. Appl. Phys. 117(17), 17B908 (2015)
10.
go back to reference K. Zheng, L. Gu, D. Sun, X. Mo, G. Chen, The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater. Sci. Eng., B 166(1), 104–107 (2010) K. Zheng, L. Gu, D. Sun, X. Mo, G. Chen, The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater. Sci. Eng., B 166(1), 104–107 (2010)
11.
go back to reference H. Huang, Y. Liu, J. Wang, M. Gao, X. Peng, Z. Ye, Self-assembly of mesoporous CuO nanosheets–CNT 3D-network composites for lithium-ion batteries. Nanoscale 5(5), 1785–1788 (2013) H. Huang, Y. Liu, J. Wang, M. Gao, X. Peng, Z. Ye, Self-assembly of mesoporous CuO nanosheets–CNT 3D-network composites for lithium-ion batteries. Nanoscale 5(5), 1785–1788 (2013)
12.
go back to reference M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93(17), 177206 (2004) M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93(17), 177206 (2004)
13.
go back to reference J. Antony, S. Pendyala, D.E. McCready, M.H. Engelhard, D. Meyer, A. Sharma, Y. Qiang, Ferromagnetism in Ti-doped ZnO nanoclusters above room temperature. IEEE Trans. Magn. 42(10), 2697–2699 (2006) J. Antony, S. Pendyala, D.E. McCready, M.H. Engelhard, D. Meyer, A. Sharma, Y. Qiang, Ferromagnetism in Ti-doped ZnO nanoclusters above room temperature. IEEE Trans. Magn. 42(10), 2697–2699 (2006)
14.
go back to reference T. Akilan, N. Srinivasan, R. Saravanan, Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method. Mater. Sci. Semicond. Process. 30, 381–387 (2015) T. Akilan, N. Srinivasan, R. Saravanan, Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method. Mater. Sci. Semicond. Process. 30, 381–387 (2015)
15.
go back to reference P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. J. Alloy. Compd. 624, 251–257 (2015) P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. J. Alloy. Compd. 624, 251–257 (2015)
16.
go back to reference A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 125(4), 238 (2019) A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 125(4), 238 (2019)
17.
go back to reference Z.Y. Ye, H.L. Lu, Y. Geng, Y.Z. Gu, Z.Y. Xie, Y. Zhang, D.W. Zhang, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 1–6 (2013) Z.Y. Ye, H.L. Lu, Y. Geng, Y.Z. Gu, Z.Y. Xie, Y. Zhang, D.W. Zhang, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 1–6 (2013)
18.
go back to reference M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016) M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016)
19.
go back to reference M. Yilmaz, G.Ü.V.E.N. Turgut, Titanium doping effect on the characteristic properties of sol-gel deposited ZnO thin films. Kovove Mater 53, 333–339 (2015) M. Yilmaz, G.Ü.V.E.N. Turgut, Titanium doping effect on the characteristic properties of sol-gel deposited ZnO thin films. Kovove Mater 53, 333–339 (2015)
20.
go back to reference S. Suwanboon, P. Amornpitoksuk, P. Bangrak, Synthesis, characterization and optical properties of Zn1− xTixO nanoparticles prepared via a high-energy ball milling technique. Ceram. Int. 37(1), 333–340 (2011) S. Suwanboon, P. Amornpitoksuk, P. Bangrak, Synthesis, characterization and optical properties of Zn1− xTixO nanoparticles prepared via a high-energy ball milling technique. Ceram. Int. 37(1), 333–340 (2011)
21.
go back to reference S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics 7, 604–610 (2017) S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics 7, 604–610 (2017)
23.
go back to reference Z. Chamanzadeh, V. Ansari, M. Zahedifar, Investigation on the properties of La-doped and Dy-doped ZnO nanorods and their enhanced photovoltaic performance of Dye-Sensitized Solar Cells. Opt. Mater. 112, 110735 (2021) Z. Chamanzadeh, V. Ansari, M. Zahedifar, Investigation on the properties of La-doped and Dy-doped ZnO nanorods and their enhanced photovoltaic performance of Dye-Sensitized Solar Cells. Opt. Mater. 112, 110735 (2021)
24.
go back to reference D.E. Navarro-López, O. Rebeca Garcia-Varela, A.-M. Ceballos-Sanchez, G. Sanchez-Ante, D.A. Kaled Corona-Romero, A.-Z. Buentello-Montoya, E.R. López-Mena, Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Engin. 123, 112004 (2021) D.E. Navarro-López, O. Rebeca Garcia-Varela, A.-M. Ceballos-Sanchez, G. Sanchez-Ante, D.A. Kaled Corona-Romero, A.-Z. Buentello-Montoya, E.R. López-Mena, Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Engin. 123, 112004 (2021)
25.
go back to reference S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012) S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012)
26.
go back to reference V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys. Chem. C 118(18), 9715–9725 (2014) V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys. Chem. C 118(18), 9715–9725 (2014)
27.
go back to reference S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-Doped ZnO nanoparticles: synthesis, structural and electrical properties. Phys. B 407, 1223–1226 (2012) S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-Doped ZnO nanoparticles: synthesis, structural and electrical properties. Phys. B 407, 1223–1226 (2012)
28.
go back to reference I. Darmadi, A. Taufik, R. Saleh, Analysis of optical and structural properties of Ti-doped ZnO nanoparticles synthesized by co-precipitation method. J. Phys. Conf. Ser. 1442(1), 012021 (2020) I. Darmadi, A. Taufik, R. Saleh, Analysis of optical and structural properties of Ti-doped ZnO nanoparticles synthesized by co-precipitation method. J. Phys. Conf. Ser. 1442(1), 012021 (2020)
29.
go back to reference P.S. Sundaram, S.S.R. Inbanathan, G. Arivazhagan, Structural and optical properties of Mn doped ZnO nanoparticles prepared by co-precipitation method. Phys. B 574, 411668 (2019) P.S. Sundaram, S.S.R. Inbanathan, G. Arivazhagan, Structural and optical properties of Mn doped ZnO nanoparticles prepared by co-precipitation method. Phys. B 574, 411668 (2019)
30.
go back to reference I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Structural and optical properties of gel combustion synthesized Zr doped ZnO nanoparticles. Optic. Mater. 35, 1189–1193 (2013) I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Structural and optical properties of gel combustion synthesized Zr doped ZnO nanoparticles. Optic. Mater. 35, 1189–1193 (2013)
31.
go back to reference N.E. Indrajith, H.S. Bhojya Naik, R. Viswanath, I.K. Suresh Gowda, M.C. Prabhakara, Bright red luminescence emission of macroporous honeycomb-like Eu3+ ion-doped ZnO nanoparticles developed by gel-combustion technique. SN Appl. Sci. 2, 863–867 (2020) N.E. Indrajith, H.S. Bhojya Naik, R. Viswanath, I.K. Suresh Gowda, M.C. Prabhakara, Bright red luminescence emission of macroporous honeycomb-like Eu3+ ion-doped ZnO nanoparticles developed by gel-combustion technique. SN Appl. Sci. 2, 863–867 (2020)
32.
go back to reference E.I. Naik, H.B. Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem. Data Collect. 29, 100505–100511 (2020) E.I. Naik, H.B. Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem. Data Collect. 29, 100505–100511 (2020)
33.
go back to reference Norouzzadeh, P., Mabhouti, K., Golzan, M. M., Naderali, R. (2019) Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. Journal of Materials Science: Materials in Electronics, 1–13. Norouzzadeh, P., Mabhouti, K., Golzan, M. M., Naderali, R. (2019) Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. Journal of Materials Science: Materials in Electronics, 1–13.
34.
go back to reference A. Sohail, M. Faraz, H. Arif, S.A. Bhat, A.A. Siddiqui, B. Bano, Deciphering the interaction of bovine heart cystatin with ZnO nanoparticles: Spectroscopic and thermodynamic approach. Int. J. Biol. Macromol. 95, 1056–1063 (2017) A. Sohail, M. Faraz, H. Arif, S.A. Bhat, A.A. Siddiqui, B. Bano, Deciphering the interaction of bovine heart cystatin with ZnO nanoparticles: Spectroscopic and thermodynamic approach. Int. J. Biol. Macromol. 95, 1056–1063 (2017)
35.
go back to reference N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind. Eng. Chem. Res. 51, 16333–16345 (2012) N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind. Eng. Chem. Res. 51, 16333–16345 (2012)
36.
go back to reference P.V. Rajkumar, K. Ravichandran, K. Karthika, B. Sakthivel, B. Muralidharan, Enhancement of electrical conductivity of sol–gel doped ZnO films through Zr doping and vacuum annealing. Mater. Pro. Rep. 31, 234–240 (2015) P.V. Rajkumar, K. Ravichandran, K. Karthika, B. Sakthivel, B. Muralidharan, Enhancement of electrical conductivity of sol–gel doped ZnO films through Zr doping and vacuum annealing. Mater. Pro. Rep. 31, 234–240 (2015)
37.
go back to reference D. Fang, C. Li, N. Wang, P. Li, P. Yao, Structural and optical properties of Mg-doped ZnO thin films prepared by a modified Pechini method. Cryst. Res. Technol. 48, 265–272 (2013) D. Fang, C. Li, N. Wang, P. Li, P. Yao, Structural and optical properties of Mg-doped ZnO thin films prepared by a modified Pechini method. Cryst. Res. Technol. 48, 265–272 (2013)
38.
go back to reference K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Optical and magnetic properties of Ni doped ZnO planetary ball milled nanopowder synthesized by coprecipitation. Ceram. Intern. 40, 6799–16804 (2014) K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Optical and magnetic properties of Ni doped ZnO planetary ball milled nanopowder synthesized by coprecipitation. Ceram. Intern. 40, 6799–16804 (2014)
39.
go back to reference L. Duan, X. Zhao, Y. Wang, W. Geng, F. Zhang, Structural and optical properties of (Mg, Al)-codoped ZnO nanoparticles synthesized by the autocombustion method. Ceram. Int. 41, 6373–6380 (2015) L. Duan, X. Zhao, Y. Wang, W. Geng, F. Zhang, Structural and optical properties of (Mg, Al)-codoped ZnO nanoparticles synthesized by the autocombustion method. Ceram. Int. 41, 6373–6380 (2015)
40.
go back to reference U. Godavarti, V.D. Mote, M.V. Ramana Reddy, P. Nagaraju, Y. Vijaya Kumar, K.T. Dasari, M.P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys. B 553, 151–160 (2019) U. Godavarti, V.D. Mote, M.V. Ramana Reddy, P. Nagaraju, Y. Vijaya Kumar, K.T. Dasari, M.P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys. B 553, 151–160 (2019)
41.
go back to reference M. Khenfouch, M. Baïtoul, M. Maaza, White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure. Opt. Mater. 34(8), 1320–1326 (2012) M. Khenfouch, M. Baïtoul, M. Maaza, White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure. Opt. Mater. 34(8), 1320–1326 (2012)
42.
go back to reference H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl. Phys. Lett. 88(24), 242507–242512 (2006) H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl. Phys. Lett. 88(24), 242507–242512 (2006)
43.
go back to reference J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 11(6), 063009–063014 (2009) J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 11(6), 063009–063014 (2009)
Metadata
Title
Investigation of Ti doping on the structural, optical, and magnetic properties of ZnO nanoparticles
Authors
P. Raji
K. Balachandra Kumar
Publication date
12-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05803-y

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue