Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

10-04-2021

3D Burr-like Pt nanoparticles as co-catalyst decorated on TiO2 nanotubes: an effective hydrogen production photoanode with enhanced photoelectrochemical performance

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Noble metal Pt nanoparticles are typically decorated on photocatalyst as co-catalyst to reach reasonable photocatalytic performance. Hence, improving the photocatalytic efficiency with the use of minimum amount of Pt is very imperative and challenging due to the low abundance and high cost of Pt. In this study, a new strategy has been developed to fabricate 3D burr-like Pt nanoparticles co-catalyst on TiO2 nanotube arrays via chemical alloying–dealloying method. It is noteworthy that in the first step, highly dispersed and uniform PtNi alloy particles were prepared by adding a certain amount of surfactant PVP and Triton X-100, and then the Pt nanoparticles with burr-like structure were obtained by the next acid dealloying treatment. Compared with reference samples loaded with pure bulk Pt nanoparticles (either big or small size) or bigger burr-like Pt nanoparticles, the obtained TiO2 nanotubes loaded with ultra-fine burr-like Pt co-catalysts showed excellent photoelectrochemical water splitting for hydrogen production. The optimized sample showed more than 4 times enhancement in the H2 production activity compared with reference sample which was loaded with pure bulk Pt particle. We ascribed this beneficial effect to the following factor: the ultra-dispersed Pt co-catalysts with burr-like structure provide a larger specific surface area and more branches as combinative sites with TiO2 which form more effective Schottky junction to drive the separation of photogenerated holes and e and also inhibit their recombination. The present study provides a facile and effective route to design high-performance photoelectrode with burr-like Pt nanoparticles as co-catalysts for photoelectrochemical.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, W. Choi, A.Z. Moshfegh, Energy Environ. Sci. 12, 59–95 (2019)CrossRef M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, W. Choi, A.Z. Moshfegh, Energy Environ. Sci. 12, 59–95 (2019)CrossRef
2.
go back to reference R. Bao, C. Chen, J. Xia, H. Chen, H. Li, J. Mater. Chem. C 7, 4981–4987 (2019)CrossRef R. Bao, C. Chen, J. Xia, H. Chen, H. Li, J. Mater. Chem. C 7, 4981–4987 (2019)CrossRef
4.
go back to reference B.Q. Zhang, L.H. He, T.T. Yao, W.J. Fan, X.T. Zhang, S. Wen, J.Y. Shi, C. Li, Chemsuschem 12, 1026–1032 (2019)CrossRef B.Q. Zhang, L.H. He, T.T. Yao, W.J. Fan, X.T. Zhang, S. Wen, J.Y. Shi, C. Li, Chemsuschem 12, 1026–1032 (2019)CrossRef
5.
go back to reference T.T. Yao, X.R. An, H.X. Han, J.Q. Chen, C. Li, Adv. Energy Mater. 8, 1800210 (2018)CrossRef T.T. Yao, X.R. An, H.X. Han, J.Q. Chen, C. Li, Adv. Energy Mater. 8, 1800210 (2018)CrossRef
6.
go back to reference R.G. Li, C. Li, Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts, vol. 60, 1st edn. (Elsevier Inc., Amsterdam, 2017). R.G. Li, C. Li, Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts, vol. 60, 1st edn. (Elsevier Inc., Amsterdam, 2017).
8.
10.
go back to reference M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRef M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRef
12.
go back to reference A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 112, 1555–1614 (2012)CrossRef A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 112, 1555–1614 (2012)CrossRef
13.
go back to reference A. Primo, A. Corma, H. García, Phys. Chem. Chem. Phys. 13, 886–910 (2011)CrossRef A. Primo, A. Corma, H. García, Phys. Chem. Chem. Phys. 13, 886–910 (2011)CrossRef
14.
go back to reference K. Lee, R. Hahn, M. Altomare, E. Selli, P. Schmuki, Adv. Mater. 25, 6133–6137 (2013)CrossRef K. Lee, R. Hahn, M. Altomare, E. Selli, P. Schmuki, Adv. Mater. 25, 6133–6137 (2013)CrossRef
15.
go back to reference J. Yang, X.R. Sun, R. Wang, M.X. Zhu, W.X. Yang, H.S. Huang, W.B. Shi, Int. J. Hydrogen Energy. 45, 12702–12710 (2020)CrossRef J. Yang, X.R. Sun, R. Wang, M.X. Zhu, W.X. Yang, H.S. Huang, W.B. Shi, Int. J. Hydrogen Energy. 45, 12702–12710 (2020)CrossRef
16.
go back to reference G. Cha, M. Altomare, N. Truong Nguyen, N. Taccardi, K. Lee, P. Schmuki, Chem. Asian J. 12, 314–323 (2017)CrossRef G. Cha, M. Altomare, N. Truong Nguyen, N. Taccardi, K. Lee, P. Schmuki, Chem. Asian J. 12, 314–323 (2017)CrossRef
17.
go back to reference N.T. Nguyen, M. Altomare, J.E. Yoo, N. Taccardi, P. Schmuki, Adv. Energy Mater. 6, 1–7 (2016)CrossRef N.T. Nguyen, M. Altomare, J.E. Yoo, N. Taccardi, P. Schmuki, Adv. Energy Mater. 6, 1–7 (2016)CrossRef
18.
go back to reference P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology 29, 014002 (2017)CrossRef P. Kar, Y. Zhang, N. Mahdi, U.K. Thakur, B.D. Wiltshire, R. Kisslinger, K. Shankar, Nanotechnology 29, 014002 (2017)CrossRef
19.
go back to reference M.J. Liu, P.F. Xia, L.Y. Zhang, B. Cheng, J.G. Yu, ACS Sustain. Chem. Eng. 6, 10472–10480 (2018)CrossRef M.J. Liu, P.F. Xia, L.Y. Zhang, B. Cheng, J.G. Yu, ACS Sustain. Chem. Eng. 6, 10472–10480 (2018)CrossRef
20.
go back to reference M.Y. Liu, X.Q. Wang, J. Liu, K.W. Wang, S.B. Jin, B. Tan, A.C.S. Appl, Mater. Interfaces 12, 12774–12782 (2020)CrossRef M.Y. Liu, X.Q. Wang, J. Liu, K.W. Wang, S.B. Jin, B. Tan, A.C.S. Appl, Mater. Interfaces 12, 12774–12782 (2020)CrossRef
21.
go back to reference P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, Nano Res. 9, 3478–3493 (2016)CrossRef P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, Nano Res. 9, 3478–3493 (2016)CrossRef
22.
23.
go back to reference J.B. Joo, R. Dillon, I. Lee, Y. Yin, C.J. Bardeen, F. Zaera, Proc. Natl. Acad. Sci. 111, 7942–7947 (2014)CrossRef J.B. Joo, R. Dillon, I. Lee, Y. Yin, C.J. Bardeen, F. Zaera, Proc. Natl. Acad. Sci. 111, 7942–7947 (2014)CrossRef
24.
go back to reference M.H. Luo, W.F. Yao, C.P. Huang, Q. Wu, Q.J. Xu, J. Mater. Chem. A. 3, 13884–13891 (2015)CrossRef M.H. Luo, W.F. Yao, C.P. Huang, Q. Wu, Q.J. Xu, J. Mater. Chem. A. 3, 13884–13891 (2015)CrossRef
25.
go back to reference S.W. Cao, J. Jiang, B.C. Zhu, J.G. Yu, Phys. Chem. Chem. Phys. 18, 19457–19463 (2016)CrossRef S.W. Cao, J. Jiang, B.C. Zhu, J.G. Yu, Phys. Chem. Chem. Phys. 18, 19457–19463 (2016)CrossRef
26.
go back to reference L. Ji, D. Spanu, N. Denisov, S. Recchia, P. Schmuki, M. Altomare, Chem. Asian J. 15, 301–309 (2020)CrossRef L. Ji, D. Spanu, N. Denisov, S. Recchia, P. Schmuki, M. Altomare, Chem. Asian J. 15, 301–309 (2020)CrossRef
27.
29.
go back to reference R. Ron, D. Gachet, K. Rechav, A. Salomon, Adv. Mater. 29, 1–7 (2017) R. Ron, D. Gachet, K. Rechav, A. Salomon, Adv. Mater. 29, 1–7 (2017)
31.
go back to reference X.W. Guo, J.H. Han, P. Liu, L.Y. Chen, Y. Ito, Z.L. Jian, T.N. Jin, A. Hirata, F.J. Li, T. Fujita, Sci. Rep. 6, 33466 (2016)CrossRef X.W. Guo, J.H. Han, P. Liu, L.Y. Chen, Y. Ito, Z.L. Jian, T.N. Jin, A. Hirata, F.J. Li, T. Fujita, Sci. Rep. 6, 33466 (2016)CrossRef
33.
go back to reference G.F. Han, L. Gu, X.Y. Lang, B.B. Xiao, Z.Z. Yang, Z. Wen, Q. Jiang, ACS. Appl. Mater. Interfaces 8, 32910–32917 (2016)CrossRef G.F. Han, L. Gu, X.Y. Lang, B.B. Xiao, Z.Z. Yang, Z. Wen, Q. Jiang, ACS. Appl. Mater. Interfaces 8, 32910–32917 (2016)CrossRef
34.
go back to reference B. Geboes, J. Ustarroz, K. Sentosun, H. Vanrompay, A. Hubin, S. Bals, T. Breugelmans, ACS Catal. 6, 5856–5864 (2016)CrossRef B. Geboes, J. Ustarroz, K. Sentosun, H. Vanrompay, A. Hubin, S. Bals, T. Breugelmans, ACS Catal. 6, 5856–5864 (2016)CrossRef
35.
go back to reference L.L. Bi, X.P. Gao, Z.C. Ma, L.J. Zhang, D.J. Wang, T.F. Xie, ChemCatChem 9, 3779–3785 (2017)CrossRef L.L. Bi, X.P. Gao, Z.C. Ma, L.J. Zhang, D.J. Wang, T.F. Xie, ChemCatChem 9, 3779–3785 (2017)CrossRef
36.
go back to reference X. Zhong, L. Wang, Z. Zhuang, X. Chen, J. Zheng, Y. Zhou, G. Zhuang, X. Li, J. Wang, Adv. Mater. Interfaces. 4, 1601029 (2017)CrossRef X. Zhong, L. Wang, Z. Zhuang, X. Chen, J. Zheng, Y. Zhou, G. Zhuang, X. Li, J. Wang, Adv. Mater. Interfaces. 4, 1601029 (2017)CrossRef
37.
go back to reference K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106, 1869–1877 (2002)CrossRef K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106, 1869–1877 (2002)CrossRef
38.
39.
go back to reference J.E. Yoo, K. Lee, M. Altomare, E. Selli, P. Schmuki, Angew. Chemie Int. Ed. 52, 7514–7517 (2013)CrossRef J.E. Yoo, K. Lee, M. Altomare, E. Selli, P. Schmuki, Angew. Chemie Int. Ed. 52, 7514–7517 (2013)CrossRef
40.
go back to reference K. Zhang, Q.L. Yue, G.F. Chen, Y.L. Zhai, L. Wang, H.S. Wang, J.S. Zhao, J.F. Liu, J.B. Jia, H.B. Li, J. Phys. Chem. C 115, 379–389 (2011)CrossRef K. Zhang, Q.L. Yue, G.F. Chen, Y.L. Zhai, L. Wang, H.S. Wang, J.S. Zhao, J.F. Liu, J.B. Jia, H.B. Li, J. Phys. Chem. C 115, 379–389 (2011)CrossRef
41.
go back to reference T. Nishimura, T. Morikawa, M. Yokoi, Electrochim. Acta. 54, 499–505 (2008)CrossRef T. Nishimura, T. Morikawa, M. Yokoi, Electrochim. Acta. 54, 499–505 (2008)CrossRef
43.
go back to reference H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Corros. Sci. 49, 203–210 (2007)CrossRef H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Corros. Sci. 49, 203–210 (2007)CrossRef
44.
go back to reference P. Deák, J. Kullgren, B. Aradi, T. Frauenheim, L. Kavan, Electrochim. Acta. 199, 27–34 (2016)CrossRef P. Deák, J. Kullgren, B. Aradi, T. Frauenheim, L. Kavan, Electrochim. Acta. 199, 27–34 (2016)CrossRef
Metadata
Title
3D Burr-like Pt nanoparticles as co-catalyst decorated on TiO2 nanotubes: an effective hydrogen production photoanode with enhanced photoelectrochemical performance
Publication date
10-04-2021
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05800-1

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue