Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2016

05-05-2016

Investigations of Aluminum-Doped Self-Healing Zircaloy Surfaces in Context of Accident-Tolerant Fuel Cladding Research

Authors: James Carr, Gokul Vasudevamurthy, Lance Snead, Brian Hinderliter, Caleb Massey

Published in: Journal of Materials Engineering and Performance | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present here some important results investigating aluminum as an effective surface dopant for increased oxidation resistance of zircaloy nuclear fuel cladding. At first, the transport behavior of aluminum into reactor grade zircaloy was studied using simple diffusion couples at temperatures greater than 770 K. The experiments revealed the formation of tens of microns thick graded Zr-Al layers. The activation energy of aluminum in zircaloy was found to be ~175 kJ/mol (~1.8 eV), indicating the high mobility of aluminum in zircaloy. Subsequently, aluminum sputter-coated zircaloy coupons were heat-treated to achieve surface doping and form compositionally graded layers. These coupons were then tested in steam environments at 1073 and 1273 K. The microstructure of the as-fabricated and steam-corroded specimens was compared to those of pure zircaloy control specimens. Analysis of data revealed that aluminum effectively competed with zircaloy for oxygen up until 1073 K blocking oxygen penetration, with no traces of large scale spalling, indicating mechanically stable interfaces and surfaces. At the highest steam test temperatures, aluminum was observed to segregate from the Zr-Al alloy under layers and migrate to the surface forming discrete clusters. Although this is perceived as an extremely desirable phenomenon, in the current experiments, oxygen was observed to penetrate into the zirconium-rich under layers, which could be attributed to formation of surface defects such as cracks in the surface alumina layers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.O. Northwood, The Development and Applications of Zirconium Alloys, Mater. Des., 1985, 6, p 58–70CrossRef D.O. Northwood, The Development and Applications of Zirconium Alloys, Mater. Des., 1985, 6, p 58–70CrossRef
2.
go back to reference T. Alam, M.K. Khan, M. Pathak, K. Ravi, R. Singh, and S.K. Gupta, A Review on the Clad Failure Studies, Nucl. Eng. Des., 2011, 241, p 3658–3677CrossRef T. Alam, M.K. Khan, M. Pathak, K. Ravi, R. Singh, and S.K. Gupta, A Review on the Clad Failure Studies, Nucl. Eng. Des., 2011, 241, p 3658–3677CrossRef
3.
go back to reference R.G. Ballinger, W.G. Dobson, and R.R. Biederman, Oxidation Reaction Kinetics of Zircaloy-4 in an Unlimited Steam Environment, J. Nucl. Mater., 1976, 62, p 213–220CrossRef R.G. Ballinger, W.G. Dobson, and R.R. Biederman, Oxidation Reaction Kinetics of Zircaloy-4 in an Unlimited Steam Environment, J. Nucl. Mater., 1976, 62, p 213–220CrossRef
4.
go back to reference M. Moalem and D.R. Olander, Oxidation of Zircaloy by Steam, J. Nucl. Mater., 1991, 182, p 170–194CrossRef M. Moalem and D.R. Olander, Oxidation of Zircaloy by Steam, J. Nucl. Mater., 1991, 182, p 170–194CrossRef
5.
go back to reference K.A. Terrani, C.M. Parish, D. Shin, and B.A. Pint, Protection of Zirconium by Alumina- and Chromia-Forming Iron Alloys Under High-Temperature Steam Exposure, J. Nucl. Mater., 2013, 438, p 64–71CrossRef K.A. Terrani, C.M. Parish, D. Shin, and B.A. Pint, Protection of Zirconium by Alumina- and Chromia-Forming Iron Alloys Under High-Temperature Steam Exposure, J. Nucl. Mater., 2013, 438, p 64–71CrossRef
6.
go back to reference G.M. Hood and R.J. Schultz, Chromium Diffusion in α-Zirconium, Zircaloy-2 and Zr-2.5 Nb, J. Nucl. Mater., 1993, 200, p 141–143CrossRef G.M. Hood and R.J. Schultz, Chromium Diffusion in α-Zirconium, Zircaloy-2 and Zr-2.5 Nb, J. Nucl. Mater., 1993, 200, p 141–143CrossRef
7.
go back to reference W.B. Frank, W.E. Haupin, H. Vogt, M. Bruno, J. Thonstad, R.K. Dawless, H. Kvande, and O.A. Taiwo, Aluminum, Ullmann’s Encyclopedia of Industrial Chemistry, Vol 76, 2000, p 598–601 W.B. Frank, W.E. Haupin, H. Vogt, M. Bruno, J. Thonstad, R.K. Dawless, H. Kvande, and O.A. Taiwo, Aluminum, Ullmann’s Encyclopedia of Industrial Chemistry, Vol 76, 2000, p 598–601
8.
go back to reference K.S. Forcey, D.K. Ross, and C.H. Wu, The Formation of Hydrogen Permeation Barriers on Steels by Aluminising, J. Nucl. Mater., 1991, 182, p 36–51CrossRef K.S. Forcey, D.K. Ross, and C.H. Wu, The Formation of Hydrogen Permeation Barriers on Steels by Aluminising, J. Nucl. Mater., 1991, 182, p 36–51CrossRef
9.
go back to reference G.V. Kidson and G.D. Miller, A Study of the Interdiffusion of Aluminum and Zirconium, J. Nucl. Mater., 1964, 12, p 61–69CrossRef G.V. Kidson and G.D. Miller, A Study of the Interdiffusion of Aluminum and Zirconium, J. Nucl. Mater., 1964, 12, p 61–69CrossRef
10.
go back to reference Y.S. Kim, G.L. Hofman, A.B. Robinson, J.L. Snelgrove, and N. Hanan, Oxidation of Aluminum Alloy Cladding for Research and Test Reactor Fuel, J. Nucl. Mater., 2008, 378, p 220–228CrossRef Y.S. Kim, G.L. Hofman, A.B. Robinson, J.L. Snelgrove, and N. Hanan, Oxidation of Aluminum Alloy Cladding for Research and Test Reactor Fuel, J. Nucl. Mater., 2008, 378, p 220–228CrossRef
11.
go back to reference R. Gholizadeh Aghoyeh and H. Khalafi, Corrosion Monitoring and Determination of Aluminium Fuel Clad of Tehran Research Reactor (TRR), Prog. Nucl. Energy, 2010, 52, p 225–228CrossRef R. Gholizadeh Aghoyeh and H. Khalafi, Corrosion Monitoring and Determination of Aluminium Fuel Clad of Tehran Research Reactor (TRR), Prog. Nucl. Energy, 2010, 52, p 225–228CrossRef
12.
go back to reference ASTM D3359, Standard Test Methods for Measuring Adhesion by Tape Test, 2005 ASTM D3359, Standard Test Methods for Measuring Adhesion by Tape Test, 2005
13.
go back to reference J. Murray, A. Peruzzi, and J.P. Abriata, The Al-Zr (Aluminum-Zirconium) System, J. Phase Equilibria, 1992, 13, p 277–291CrossRef J. Murray, A. Peruzzi, and J.P. Abriata, The Al-Zr (Aluminum-Zirconium) System, J. Phase Equilibria, 1992, 13, p 277–291CrossRef
14.
go back to reference H. Okamoto, Al-Zr (Aluminum-Zirconium), J. Phase Equilibria, 2002, 23, p 455–456CrossRef H. Okamoto, Al-Zr (Aluminum-Zirconium), J. Phase Equilibria, 2002, 23, p 455–456CrossRef
15.
go back to reference Y. Miyamoto, W. Kaysser, B. Rabin, A. Kawasaki, and R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media, New York, 2013 Y. Miyamoto, W. Kaysser, B. Rabin, A. Kawasaki, and R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media, New York, 2013
16.
go back to reference Nuclear Fuel Behavior in Loss-of-Coolant Accident (LOCA) Conditions, State-of-the-Art Report, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Paris, 2009 Nuclear Fuel Behavior in Loss-of-Coolant Accident (LOCA) Conditions, State-of-the-Art Report, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Paris, 2009
17.
go back to reference A. Laik, K. Bhanumurthy, and G.B. Kale, Intermetallics in the Zr–Al Diffusion Zone, Intermetallics, 2004, 12, p 69–74CrossRef A. Laik, K. Bhanumurthy, and G.B. Kale, Intermetallics in the Zr–Al Diffusion Zone, Intermetallics, 2004, 12, p 69–74CrossRef
18.
go back to reference J. Räisänen and J. Keinonen, Diffusion of Al in Ion-Implanted α-Zr and α-Hf, Appl. Phys. A, 1985, 36, p 175–178CrossRef J. Räisänen and J. Keinonen, Diffusion of Al in Ion-Implanted α-Zr and α-Hf, Appl. Phys. A, 1985, 36, p 175–178CrossRef
19.
go back to reference J. Dickson, L. Zhou, A. Paz y Puente, M. Fu, D.D. Keiser, Jr., and Y.H. Sohn, Interdiffusion and Reaction Between Zr and Al Alloys from 425° to 625 °C, Intermetallics, 2014, 49, p 154–162CrossRef J. Dickson, L. Zhou, A. Paz y Puente, M. Fu, D.D. Keiser, Jr., and Y.H. Sohn, Interdiffusion and Reaction Between Zr and Al Alloys from 425° to 625 °C, Intermetallics, 2014, 49, p 154–162CrossRef
20.
go back to reference K. Shimizu, K. Kobayashi, P. Skeldon, G.E. Thompson, and G.C. Wood, Anodic Oxidation of Zirconium Covered with a Thin Layer of Aluminium, Thin Solid Films, 1997, 295, p 156–161CrossRef K. Shimizu, K. Kobayashi, P. Skeldon, G.E. Thompson, and G.C. Wood, Anodic Oxidation of Zirconium Covered with a Thin Layer of Aluminium, Thin Solid Films, 1997, 295, p 156–161CrossRef
21.
go back to reference D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park, and Y.H. Koo, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465CrossRef D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park, and Y.H. Koo, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465CrossRef
22.
go back to reference V. Urbanic and T. Heidrick, High-Temperature Oxidation of Zircaloy-2 and Zircaloy-4 in Steam, J. Nucl. Mater., 1978, 75, p 251–261CrossRef V. Urbanic and T. Heidrick, High-Temperature Oxidation of Zircaloy-2 and Zircaloy-4 in Steam, J. Nucl. Mater., 1978, 75, p 251–261CrossRef
23.
go back to reference W. Smeltzer, Oxidation of Aluminum in the Temperature Range 400-600 °C, J. Electrochem. Soc., 1956, 103, p 475CrossRef W. Smeltzer, Oxidation of Aluminum in the Temperature Range 400-600 °C, J. Electrochem. Soc., 1956, 103, p 475CrossRef
Metadata
Title
Investigations of Aluminum-Doped Self-Healing Zircaloy Surfaces in Context of Accident-Tolerant Fuel Cladding Research
Authors
James Carr
Gokul Vasudevamurthy
Lance Snead
Brian Hinderliter
Caleb Massey
Publication date
05-05-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2094-4

Other articles of this Issue 6/2016

Journal of Materials Engineering and Performance 6/2016 Go to the issue

Premium Partners