Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 20/2021

23-09-2021

Investigations on caesium-incorporated rubidium tin chloride-defect perovskite nanomaterial as highly efficient ultraviolet photocatalysts

Authors: R. Ganesan, R. Muralidharan, G. Parthipan, S. P. Vinodhini, V. Balasubramani, T. M. Sridhar, R. Arulmozhi, H. Leelavathi

Published in: Journal of Materials Science: Materials in Electronics | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently perovskites-based inorganic compounds have been researched incredibly for their photocatalytic applications. In this work, rubidium tin chloride [Rb2SnCl6] and caesium-incorporated rubidium [(RbXCs1-X)2SnCl6]-defect perovskites were synthesized for photocatalytic applications. This material is very useful for the degradation of dyes under UV irradiation among other photocatalysts, because of its superior properties such as nontoxicity, low cost, simple preparation methods and long-term thermal stability. The crystal structure, morphology and elemental composition of synthesized defect perovskite materials have been analysed using XRD, FESEM and EDAX mapping analysis. The UV studies reveal that the band-gap values were tuned (from 2.71 eV in Rb2SnCl6 to 3.78 eV in (Rb0.5Cs0.5)2SnCl6), resulting in a blue shift of the PL emission peak (from 458 to 328 nm) due to the incorporation of caesium in rubidium site. The thermal stability of (Rb0.5Cs0.5)2SnCl6 is enhanced over other synthesized defect perovskite materials because 76% of samples remained at the highest temperature of 750 °C. Synthesized defect perovskite materials were used in the photocatalytic degradation of methylene blue dye under UV light radiation. Furthermore, an excellent photocatalytic degradation is observed for (Rb0.5Cs0.5)2SnCl6 (78% to 85%) compared to other defect perovskite materials even after 120 min irradiation. The increase in photocatalytic efficiency of (Rb0.5Cs0.5)2SnCl6 is due to strong absorption of light, large separation of electron–holes pairs and the size of the nanoparticles. Also, the radical trapping experiment showed that the super oxide radicals (.O2) and photo-generated holes (h+) were the predominant active species in the photocatalytic degradation of methylene blue dye process. This study concludes that the defect perovskites are the potential materials for photocatalytic application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference H.E. Ghatami, A. Laref, S. Laref, J. Mater. Sci.: Mater. Electron. 30, 711–720 (2019) H.E. Ghatami, A. Laref, S. Laref, J. Mater. Sci.: Mater. Electron. 30, 711–720 (2019)
2.
go back to reference A.K. Tangra, M. Sharma, U.L. Zainudeen, G.S. Lotey, J. Mater. Sci.: Mater. Electron. 31, 13657–13666 (2020) A.K. Tangra, M. Sharma, U.L. Zainudeen, G.S. Lotey, J. Mater. Sci.: Mater. Electron. 31, 13657–13666 (2020)
3.
go back to reference R. Ganesan, S.P. Vinodhini, V. Balasubramani, G. Parthipan, T.M. Sridhar, R. Arulmozhi, R. Muralidharan, New J. Chem. 43, 15258–15266 (2019)CrossRef R. Ganesan, S.P. Vinodhini, V. Balasubramani, G. Parthipan, T.M. Sridhar, R. Arulmozhi, R. Muralidharan, New J. Chem. 43, 15258–15266 (2019)CrossRef
4.
go back to reference S.M. Jassim, N.A. Bakr, F.I. Mustafa, J. Mater. Sci.: Mater. Electron. 31, 16199–16207 (2020) S.M. Jassim, N.A. Bakr, F.I. Mustafa, J. Mater. Sci.: Mater. Electron. 31, 16199–16207 (2020)
5.
go back to reference R. Nagarajan, S. Ahmad, M. Kumar, G.V. Gupta, Prakash, , Eur. J. Inorg. Chem. 45, 4295–4302 (2020)CrossRef R. Nagarajan, S. Ahmad, M. Kumar, G.V. Gupta, Prakash, , Eur. J. Inorg. Chem. 45, 4295–4302 (2020)CrossRef
6.
go back to reference Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, Y. Cheng, J. Tang, Adv. Funct. Mater 28(29), 1801131 (2018)CrossRef Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, Y. Cheng, J. Tang, Adv. Funct. Mater 28(29), 1801131 (2018)CrossRef
7.
go back to reference A. Kanwat, E. Moyen, S. Cho, J. Jang, A.C.S. Appl, Mater. Interfaces 10, 16852–16860 (2018)CrossRef A. Kanwat, E. Moyen, S. Cho, J. Jang, A.C.S. Appl, Mater. Interfaces 10, 16852–16860 (2018)CrossRef
8.
go back to reference Y.H. Song, S.H. Choi, W.K. Park, J.S. Yoo, B.K. Kang, S.B. Kwon, H.S. Jung, W.S. Yang, D.H. Yoon, New J. Chem. 41, 14076–14079 (2017)CrossRef Y.H. Song, S.H. Choi, W.K. Park, J.S. Yoo, B.K. Kang, S.B. Kwon, H.S. Jung, W.S. Yang, D.H. Yoon, New J. Chem. 41, 14076–14079 (2017)CrossRef
9.
go back to reference S. T. Umedov, A. V. Grigorieva, L. S. Lepnev, A. V. Knotko, K. Nakabayashi, S. iOhkoshi, A. V. Shevelkov, Front. Chem. 8, 564 (2020)CrossRef S. T. Umedov, A. V. Grigorieva, L. S. Lepnev, A. V. Knotko, K. Nakabayashi, S. iOhkoshi, A. V. Shevelkov, Front. Chem. 8, 564 (2020)CrossRef
10.
go back to reference H. Mehdi, M. Matheron, A. Mhamdi, M. Manceau, C. Roux, S. Berson, S. Cros, A. Bouazizi, J. Mater. Sci.: Mater. Electron. 31, 10251–10259 (2020) H. Mehdi, M. Matheron, A. Mhamdi, M. Manceau, C. Roux, S. Berson, S. Cros, A. Bouazizi, J. Mater. Sci.: Mater. Electron. 31, 10251–10259 (2020)
12.
go back to reference W. Zhu, G. Xin, Y. Wang, X. Min, T. Yao, W. Xu, M. Fang, S. Shi, J. Shi, J. Lian, J. Mater. Chem. A 6, 2577–2584 (2018)CrossRef W. Zhu, G. Xin, Y. Wang, X. Min, T. Yao, W. Xu, M. Fang, S. Shi, J. Shi, J. Lian, J. Mater. Chem. A 6, 2577–2584 (2018)CrossRef
13.
go back to reference K. Sveinbjornsson, N. Thein, Z. Saki, S. Svanström, W. Yang, U.B. Cappel, H. Rensmo, G. Boschloo, K. Aitola, E.M.J. Johansson, Sustainable Energy Fuels 2, 606–615 (2018)CrossRef K. Sveinbjornsson, N. Thein, Z. Saki, S. Svanström, W. Yang, U.B. Cappel, H. Rensmo, G. Boschloo, K. Aitola, E.M.J. Johansson, Sustainable Energy Fuels 2, 606–615 (2018)CrossRef
14.
go back to reference Z. Zhang, C. Wu, D. Wang, G. Liu, Q. Zhang, W. Luo, X. Qi, X. Guo, Y. Zhang, Y. Lao, B. Qu, L. Xiao, Z. Chen, Org. Electron. 74, 204–210 (2019)CrossRef Z. Zhang, C. Wu, D. Wang, G. Liu, Q. Zhang, W. Luo, X. Qi, X. Guo, Y. Zhang, Y. Lao, B. Qu, L. Xiao, Z. Chen, Org. Electron. 74, 204–210 (2019)CrossRef
15.
go back to reference P. Liu, Y. Gong, Y. Xiao, M. Su, S. Kong, F. Qi, H. Zhang, S. Wang, X. Sun, C. Wang, X.Z. Zhao, Chem. Commun 55, 218–221 (2019)CrossRef P. Liu, Y. Gong, Y. Xiao, M. Su, S. Kong, F. Qi, H. Zhang, S. Wang, X. Sun, C. Wang, X.Z. Zhao, Chem. Commun 55, 218–221 (2019)CrossRef
16.
go back to reference D. Amgar, T. Binyamin, V. Uvarov, L. Etgar, Nanoscale 10, 6060–6068 (2018)CrossRef D. Amgar, T. Binyamin, V. Uvarov, L. Etgar, Nanoscale 10, 6060–6068 (2018)CrossRef
17.
go back to reference A. Bernasconi, A. Rizzo, A. Listorti, A. Mahata, E. Mosconi, F.D. Angelis, L. Malavasi, Chem. Mater. 31, 3527–3533 (2019)CrossRef A. Bernasconi, A. Rizzo, A. Listorti, A. Mahata, E. Mosconi, F.D. Angelis, L. Malavasi, Chem. Mater. 31, 3527–3533 (2019)CrossRef
18.
go back to reference T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. Macdonald, J. Peng, M. Lockrey, W. Li, Y. B. Cheng, T. P. White, K. Weber, K. Catchpole, Nano Energy 30, 330–340 (2016)CrossRef T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. Macdonald, J. Peng, M. Lockrey, W. Li, Y. B. Cheng, T. P. White, K. Weber, K. Catchpole, Nano Energy 30, 330–340 (2016)CrossRef
20.
go back to reference M. Ranjeh, F. Beshkar, O. Amiri, M.S. Niasari, H. Moayedi, J. Alloy. Compd. 815, 15241 (2020)CrossRef M. Ranjeh, F. Beshkar, O. Amiri, M.S. Niasari, H. Moayedi, J. Alloy. Compd. 815, 15241 (2020)CrossRef
21.
go back to reference O. Amiri, F. Beshkar, S.S. Ahmed, P.H. Mahmood, A.A. Dezaye, Int. J. Hydrogen Energy 46, 6547–6560 (2021)CrossRef O. Amiri, F. Beshkar, S.S. Ahmed, P.H. Mahmood, A.A. Dezaye, Int. J. Hydrogen Energy 46, 6547–6560 (2021)CrossRef
22.
go back to reference S.A. Shoberi, M.M. Kamazani, F. Beshkar, J. Mater. Sci.: Mater. Electron. 28, 8108–8115 (2017) S.A. Shoberi, M.M. Kamazani, F. Beshkar, J. Mater. Sci.: Mater. Electron. 28, 8108–8115 (2017)
23.
go back to reference B. Revathi, L. Balakrishnan, S. Pichaimuthu, A.N. Grace, N.K. Chandar, J. Mater. Sci.: Mater. Electron. 24, 22487–22495 (2020) B. Revathi, L. Balakrishnan, S. Pichaimuthu, A.N. Grace, N.K. Chandar, J. Mater. Sci.: Mater. Electron. 24, 22487–22495 (2020)
24.
25.
go back to reference K.F. Mouraa, L. Chantellea, D. Rosendoa, E. Longob, I. Maria Garcia, D. Santosa, Mater. Res. 20, 317–324 (2017)CrossRef K.F. Mouraa, L. Chantellea, D. Rosendoa, E. Longob, I. Maria Garcia, D. Santosa, Mater. Res. 20, 317–324 (2017)CrossRef
26.
27.
go back to reference X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)CrossRef X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159, 227–234 (2017)CrossRef
28.
go back to reference D. Prochowicz, M.M. Tavakoli, A. Kalam, R.D. Chavan, S. Trivedi, M. Kumar, P. Yadav, J. Mater. Chem. A 7, 8218–8225 (2019)CrossRef D. Prochowicz, M.M. Tavakoli, A. Kalam, R.D. Chavan, S. Trivedi, M. Kumar, P. Yadav, J. Mater. Chem. A 7, 8218–8225 (2019)CrossRef
29.
go back to reference M.R. Linaburg, E.T. McClure, J.D. Majher, P.M. Woodward, Chem. Mater. 8, 3507–3514 (2017)CrossRef M.R. Linaburg, E.T. McClure, J.D. Majher, P.M. Woodward, Chem. Mater. 8, 3507–3514 (2017)CrossRef
30.
go back to reference A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, J. Phys. Chem. C 120(22), 11777–11785 (2016)CrossRef A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, J. Phys. Chem. C 120(22), 11777–11785 (2016)CrossRef
31.
go back to reference K. Nagamoto, Infrared and Raman Spectra of inorganic and coordination Compounds, 1872–1892 (2009) K. Nagamoto, Infrared and Raman Spectra of inorganic and coordination Compounds, 1872–1892 (2009)
32.
go back to reference J.L. Xie, Z.Q. Huang, B. Wang, W.J. Chen, W.X. Lu, X. Liu, J.L. Song, Nanoscale 11, 6719–6726 (2019)CrossRef J.L. Xie, Z.Q. Huang, B. Wang, W.J. Chen, W.X. Lu, X. Liu, J.L. Song, Nanoscale 11, 6719–6726 (2019)CrossRef
33.
go back to reference T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.B. Cheng, T.P. White, K. Webe, K. Catchpole, Adv. Energy Mater. 7, 1700228 (2017)CrossRef T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.C. Wang, T.C. Kho, K.C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.B. Cheng, T.P. White, K. Webe, K. Catchpole, Adv. Energy Mater. 7, 1700228 (2017)CrossRef
34.
go back to reference M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P.C. Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206–209 (2016)CrossRef M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P.C. Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206–209 (2016)CrossRef
35.
go back to reference M. Kato, A. Suzuki, Y. Ohishi, H. Tanaka, T. Oku, AIP Conference Proceedings, 1929, 020015 (2018) M. Kato, A. Suzuki, Y. Ohishi, H. Tanaka, T. Oku, AIP Conference Proceedings, 1929, 020015 (2018)
36.
go back to reference C. C. Chung, S. Narra, E. Jokar, H. P. Wu, E. W. Guang Diau, J. Mater. Chem. A 5, 13957–13965 (2017)CrossRef C. C. Chung, S. Narra, E. Jokar, H. P. Wu, E. W. Guang Diau, J. Mater. Chem. A 5, 13957–13965 (2017)CrossRef
37.
go back to reference S. M. Abdulrahim, Z. Ahamed, J. Bhagatra, N. J. Al-Thani, Nanomaterials, 10, 1635 (2020)CrossRef S. M. Abdulrahim, Z. Ahamed, J. Bhagatra, N. J. Al-Thani, Nanomaterials, 10, 1635 (2020)CrossRef
38.
go back to reference I.J. Park, S. Seo, M.A. Park, S. Lee, D.H. Kim, K. Zhu, H. Shin, J.Y. Kim, A.C.S. Appl, Mater. Interfaces 9(48), 41898–41905 (2017)CrossRef I.J. Park, S. Seo, M.A. Park, S. Lee, D.H. Kim, K. Zhu, H. Shin, J.Y. Kim, A.C.S. Appl, Mater. Interfaces 9(48), 41898–41905 (2017)CrossRef
39.
go back to reference A. Abdulrahman, P. Yadav, M. Alotaibi, N. Arora, A. Alyamani, H. Albrithen, M.I. Dar, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C 121, 24903–24908 (2017)CrossRef A. Abdulrahman, P. Yadav, M. Alotaibi, N. Arora, A. Alyamani, H. Albrithen, M.I. Dar, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C 121, 24903–24908 (2017)CrossRef
40.
go back to reference S.M. Abdulrahim, Z. Ahmad, J. Bahadra, N.J. Al-Thani, Nanomaterials 10, 1635 (2020)CrossRef S.M. Abdulrahim, Z. Ahmad, J. Bahadra, N.J. Al-Thani, Nanomaterials 10, 1635 (2020)CrossRef
41.
go back to reference M. Amini, M. Ashrafi, S. Gautam, K.H. Chae, RSC Adv. 5, 37469–37475 (2015)CrossRef M. Amini, M. Ashrafi, S. Gautam, K.H. Chae, RSC Adv. 5, 37469–37475 (2015)CrossRef
42.
44.
go back to reference A. Haruna, I. Abdulkadir and S.O. Idris , Heliyon, 6, e03237 (2020) A. Haruna, I. Abdulkadir and S.O. Idris , Heliyon, 6, e03237 (2020)
45.
go back to reference M. Valian, F. Beshkar, M.S. Niasari, J. Mater. Sci.: Mater. Electron. 28, 6292–6300 (2017) M. Valian, F. Beshkar, M.S. Niasari, J. Mater. Sci.: Mater. Electron. 28, 6292–6300 (2017)
46.
go back to reference P. Shirazi, M. Rahbar, M. Behpour, M. Ashrafi, New J. Chem 44, 231–238 (2020)CrossRef P. Shirazi, M. Rahbar, M. Behpour, M. Ashrafi, New J. Chem 44, 231–238 (2020)CrossRef
47.
go back to reference H.Abbas Alshamsi, F.Beshkar, O.Amiri and M.S. Niasari, Chemospere, 274, 129765(2021) H.Abbas Alshamsi, F.Beshkar, O.Amiri and M.S. Niasari, Chemospere, 274, 129765(2021)
48.
go back to reference H. Liu, M. Li, J. Yang, C. Hu, J. Shang, H. Zhai, Material Research Bulletin 106, 19–279 (2018)CrossRef H. Liu, M. Li, J. Yang, C. Hu, J. Shang, H. Zhai, Material Research Bulletin 106, 19–279 (2018)CrossRef
49.
go back to reference M.M. Kamazani, R. Rahmatolahzadeh, S.A. Shobeiri, F. Beshkar, Ultrason. Sonochem. 39, 233–239 (2017)CrossRef M.M. Kamazani, R. Rahmatolahzadeh, S.A. Shobeiri, F. Beshkar, Ultrason. Sonochem. 39, 233–239 (2017)CrossRef
Metadata
Title
Investigations on caesium-incorporated rubidium tin chloride-defect perovskite nanomaterial as highly efficient ultraviolet photocatalysts
Authors
R. Ganesan
R. Muralidharan
G. Parthipan
S. P. Vinodhini
V. Balasubramani
T. M. Sridhar
R. Arulmozhi
H. Leelavathi
Publication date
23-09-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 20/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-07001-2

Other articles of this Issue 20/2021

Journal of Materials Science: Materials in Electronics 20/2021 Go to the issue