Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2016

16-10-2015

Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications

Authors: M. Ravi, Shenhua Song, Jingwei Wang, Ting Wang, Reddeppa Nadimicherla

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium ion conducting biodegradable gel polymer electrolytes based on a poly (ε-caprolactone):lithium tetrafluoroborate (PCL:LiBF4) system doped with various concentrations of 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution cast technique. The gel polymer electrolyte was eco-friendly, flexible, transparent and free-standing. The conductivity and transference number measurements were carried out to investigate ionic conduction and charge transport in the gel polymer electrolytes. The frequency-dependent conductivity results revealed that the room-temperature electrical conductivity increased with increasing EMIMBF4 concentration. At room temperature, the gel polymer electrolyte with a composition of 85PCL:15LiBF4 + 40EMIMBF4 exhibited a high conductivity value of approximately 2.83 × 10−4 S cm−1, which was favored by the rich amorphous phase as confirmed with X-ray diffraction analysis. The lithium ion transport number and electrochemical stability of the 40 % EMIMBF4 gel polymer electrolyte were 0.43 and 3.7 V, respectively. These values are acceptable and quite enough for practical device applications. Consequently, the 40 wt% EMIMBF4 incorporated gel polymer electrolyte could be used to fabricate lithium ion batteries with a suitable selection of other components of the battery system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.-H. Tsao, P.-L. Kuo, Poly (dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J. Membr. Sci. 489, 36–42 (2015)CrossRef C.-H. Tsao, P.-L. Kuo, Poly (dimethylsiloxane) hybrid gel polymer electrolytes of a porous structure for lithium ion battery. J. Membr. Sci. 489, 36–42 (2015)CrossRef
2.
go back to reference K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Donghe, F.H. Isikgor, J. Ouyang, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 26, 4438–4462 (2015) K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, D. Donghe, F.H. Isikgor, J. Ouyang, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 26, 4438–4462 (2015)
3.
go back to reference G.P. Pandey, S.A. Hashmi, Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J. Power Sources 243, 211–218 (2013)CrossRef G.P. Pandey, S.A. Hashmi, Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J. Power Sources 243, 211–218 (2013)CrossRef
4.
go back to reference J.E. Benedetti, F.S. Freitas, F.C. Fernandes, A.S. Goncalves, A. Magalhaes, A.F. Nogueira, Investigation of the structural properties of poly(ethylene oxide) copolymer as gel polymer electrolyte and durability test in dye-sensitized solar cells. Ionics 21, 1771–1780 (2015)CrossRef J.E. Benedetti, F.S. Freitas, F.C. Fernandes, A.S. Goncalves, A. Magalhaes, A.F. Nogueira, Investigation of the structural properties of poly(ethylene oxide) copolymer as gel polymer electrolyte and durability test in dye-sensitized solar cells. Ionics 21, 1771–1780 (2015)CrossRef
5.
go back to reference X. Hou, K.S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. J. Solid State Electrochem. 5, 293–299 (2001)CrossRef X. Hou, K.S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. J. Solid State Electrochem. 5, 293–299 (2001)CrossRef
6.
go back to reference S. Ramesh, R. Shanti, R. Duriraj, Effect of ethylene carbonate in poly (methyl methacrylate)-lithium tetraborate based polymer electrolytes. J. Non-Cryst. Solids 357, 1357–1363 (2011)CrossRef S. Ramesh, R. Shanti, R. Duriraj, Effect of ethylene carbonate in poly (methyl methacrylate)-lithium tetraborate based polymer electrolytes. J. Non-Cryst. Solids 357, 1357–1363 (2011)CrossRef
7.
go back to reference J.H. Shin, S.S. Jung, K.W. Kim, H.J. Ahn, Preparation and characterization of plasticized polymer relectrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J. Mater. Sci. Mater. Electron. 13, 727–733 (2002) J.H. Shin, S.S. Jung, K.W. Kim, H.J. Ahn, Preparation and characterization of plasticized polymer relectrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J. Mater. Sci. Mater. Electron. 13, 727–733 (2002)
8.
go back to reference F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88, 169–191 (2000)CrossRef F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88, 169–191 (2000)CrossRef
9.
go back to reference C.S. Brazel, R.D. Rogers (eds.), Ionic Liquids in Polymer Systems, ACS Symposium Series, vol. 913 (American Chemical Society, Washington, DC, 2005) C.S. Brazel, R.D. Rogers (eds.), Ionic Liquids in Polymer Systems, ACS Symposium Series, vol. 913 (American Chemical Society, Washington, DC, 2005)
10.
go back to reference M. Khutia, G.M. Joshi, Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J. Mater. Sci. Mater. Electron. 26, 5475–5488 (2015) M. Khutia, G.M. Joshi, Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J. Mater. Sci. Mater. Electron. 26, 5475–5488 (2015)
11.
go back to reference S.K. Chaurasia, R.K. Singh, S. Chandra, Dielectric relaxation and conductivity studies on (PEO:LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion–ion interaction. J. Polym. Sci. Part B Polym. Phys. 49, 291–300 (2011)CrossRef S.K. Chaurasia, R.K. Singh, S. Chandra, Dielectric relaxation and conductivity studies on (PEO:LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion–ion interaction. J. Polym. Sci. Part B Polym. Phys. 49, 291–300 (2011)CrossRef
12.
go back to reference M. Watanabe, S. Nagano, K. Sanui, N. Ogata, Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ion. 28–30, 911–917 (1988)CrossRef M. Watanabe, S. Nagano, K. Sanui, N. Ogata, Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ion. 28–30, 911–917 (1988)CrossRef
13.
go back to reference N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J. Mater. Sci.: Mater. Electron. 25, 2759–2770 (2014) N. Shukla, A.K. Thakur, A. Shukla, R. Chatterjee, Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J. Mater. Sci.: Mater. Electron. 25, 2759–2770 (2014)
14.
go back to reference C.M. Costa, V. Sencadas, J.G. Rocha, M.M. Silva, S. Lanceros-Mendez, Evaluation of the main processing parameters influencing the performance of poly(vinylidenefluride–trifluoroethylene) lithium ion battery separators. J. Solid State Electrochem. 17, 861–870 (2013)CrossRef C.M. Costa, V. Sencadas, J.G. Rocha, M.M. Silva, S. Lanceros-Mendez, Evaluation of the main processing parameters influencing the performance of poly(vinylidenefluride–trifluoroethylene) lithium ion battery separators. J. Solid State Electrochem. 17, 861–870 (2013)CrossRef
15.
go back to reference S. Ramesh, C.-W. Liew, K. Ramesh, Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J. Non-Cryst. Solids 357, 2132–2138 (2011)CrossRef S. Ramesh, C.-W. Liew, K. Ramesh, Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J. Non-Cryst. Solids 357, 2132–2138 (2011)CrossRef
16.
go back to reference K. Sownthari, S.A. Suthanthiraraj, Preparation and properties of a gel polymer electrolyte system based on poly ε-caprolactone containing 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfony) imide. J. Phys. Chem. Solids 75, 746–751 (2014)CrossRef K. Sownthari, S.A. Suthanthiraraj, Preparation and properties of a gel polymer electrolyte system based on poly ε-caprolactone containing 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfony) imide. J. Phys. Chem. Solids 75, 746–751 (2014)CrossRef
17.
go back to reference H.J. Woo, S.R. Majid, A.K. Arof, Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ion. 252, 102–108 (2013)CrossRef H.J. Woo, S.R. Majid, A.K. Arof, Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ion. 252, 102–108 (2013)CrossRef
18.
go back to reference K. Sownthari, S.A. Suthanthiraraj, Structural, thermal and electrical studies on gel polymer electrolytes containing 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide. Ionics 21, 1649–1654 (2015)CrossRef K. Sownthari, S.A. Suthanthiraraj, Structural, thermal and electrical studies on gel polymer electrolytes containing 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide. Ionics 21, 1649–1654 (2015)CrossRef
19.
go back to reference Z. Fu, H. Feng, C. Sun, X. Xiang, W. Wu, J. Luo, Q. Hu, A. Feng, W. Li, Influence of solvent type on porosity structure and properties of polymer separator for the Li-ion batteries. J. Solid State Electrochem. 17, 2167–2172 (2013)CrossRef Z. Fu, H. Feng, C. Sun, X. Xiang, W. Wu, J. Luo, Q. Hu, A. Feng, W. Li, Influence of solvent type on porosity structure and properties of polymer separator for the Li-ion batteries. J. Solid State Electrochem. 17, 2167–2172 (2013)CrossRef
Metadata
Title
Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications
Authors
M. Ravi
Shenhua Song
Jingwei Wang
Ting Wang
Reddeppa Nadimicherla
Publication date
16-10-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3899-x

Other articles of this Issue 2/2016

Journal of Materials Science: Materials in Electronics 2/2016 Go to the issue