Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 3/2023

20-03-2023 | Original Research Article

Large Bubble-Resolved Direct Numerical Simulation for Multiphase Flow Applied to Gas-Stirred Ladles: Grid Resolution and Plug Eccentricity Effects

Authors: Qiang Li, Petrus Christiaan Pistorius

Published in: Metallurgical and Materials Transactions B | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is a need for bubble-scale modeling of bubbly multiphase turbulent flow in gas-stirred reactors, with a direct resolution of bubble formation, bubble shape, bubble deformation, bubble coalescence and breakup phenomena. A large dispersed-phase resolved direct numerical simulation (LDPR-DNS) based on a fine grid volume of fluid was proposed in our previous work and employed in understanding multiscale phenomena in gas- or mechanically stirred ladles. A remaining challenge is how to determine the required grid resolution for targeted phenomena, particularly when large eddy simulation (LES) is used to resolve the turbulence of dispersed multiphase flow. In this study, we first review the evolution of multiphase flow models and their gaps in the context of a multiscale framework and then clarify the advantages of LDPR-DNS by comparing it with the traditional computational fluid dynamics of multiphase systems. A particular focus was identifying a suitable grid spacing for LDPR-DNS with LES, and several grid schemes were carefully investigated in terms of whether the bubble-scale related flow phenomena are effectively resolved, the LES model realistically captures the utmost part of turbulence, and the balance of interfacial energy transfer between two phases is precisely closed. Finally, the model with a high-resolution grid was applied to reveal the effect of eccentricity on flow pattern, large-scale interface profile and open eye, energy transfer efficiency, inactive zone distribution, and features of the turbulent kinetic energy and its dissipation rate, with a resolution of bubbles. The established LDPR-DNS will tremendously boost the multiphase flow simulation toward a smaller spatio-temporal scale and more complex phenomena.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Y. Liu, M. Ersson, H. Liu, P.G. Jonsson, and Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 555–77.CrossRef Y. Liu, M. Ersson, H. Liu, P.G. Jonsson, and Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 555–77.CrossRef
3.
4.
5.
6.
go back to reference D. Mazumdar and J.W. Evans: Modelling of Steelmaking Process, CRC Press, Boca Raton, 2009.CrossRef D. Mazumdar and J.W. Evans: Modelling of Steelmaking Process, CRC Press, Boca Raton, 2009.CrossRef
8.
go back to reference Y. Liu, M. Ersson, H.P. Liu, P. Jonsson, and Y. Gan: Steel Res. Int., 2019, vol. 90, p. 1800494.CrossRef Y. Liu, M. Ersson, H.P. Liu, P. Jonsson, and Y. Gan: Steel Res. Int., 2019, vol. 90, p. 1800494.CrossRef
9.
go back to reference G. Irons, A. Senguttuvan, and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6.CrossRef G. Irons, A. Senguttuvan, and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6.CrossRef
10.
go back to reference L.M. Li, X.J. Li, Z.C. Zhu, and B.K. Li: Powder Technol., 2020, vol. 373, pp. 14–25.CrossRef L.M. Li, X.J. Li, Z.C. Zhu, and B.K. Li: Powder Technol., 2020, vol. 373, pp. 14–25.CrossRef
11.
go back to reference W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.CrossRef W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1251–63.CrossRef
12.
go back to reference J.P. Bellot, J.S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, and A. Jardy: Materials, 2018, vol. 11, p. 1179.CrossRef J.P. Bellot, J.S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, and A. Jardy: Materials, 2018, vol. 11, p. 1179.CrossRef
14.
go back to reference A. Conejo, S. Kitamura, N. Maruoka, and S. Kim: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 914–23.CrossRef A. Conejo, S. Kitamura, N. Maruoka, and S. Kim: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 914–23.CrossRef
15.
go back to reference Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: Metals, 2021, vol. 11, p. 1596.CrossRef Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: Metals, 2021, vol. 11, p. 1596.CrossRef
16.
go back to reference Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: JOM, 2022, vol. 74, pp. 1588–1600.CrossRef Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: JOM, 2022, vol. 74, pp. 1588–1600.CrossRef
17.
go back to reference Q. Li, X.Y. Shen, S. Guo, M.M. Li, and Z.S. Zou: Steel Res. Int., 2021, vol. 92, p. 2100239.CrossRef Q. Li, X.Y. Shen, S. Guo, M.M. Li, and Z.S. Zou: Steel Res. Int., 2021, vol. 92, p. 2100239.CrossRef
18.
go back to reference Q. Li, S.W. Ma, and Z.S. Zou: Metall. Mater. Trans. B, 2022, vol. 53, pp. 3648–67.CrossRef Q. Li, S.W. Ma, and Z.S. Zou: Metall. Mater. Trans. B, 2022, vol. 53, pp. 3648–67.CrossRef
19.
go back to reference H.P. Liu, Z.Y. Qi, and M.G. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–58.CrossRef H.P. Liu, Z.Y. Qi, and M.G. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–58.CrossRef
20.
go back to reference Q. Cao and L. Nastac: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1388–1404.CrossRef Q. Cao and L. Nastac: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1388–1404.CrossRef
21.
go back to reference R. Singh, D. Mazumdar, and A.K. Ray: ISIJ Int., 2008, vol. 48, pp. 1033–35.CrossRef R. Singh, D. Mazumdar, and A.K. Ray: ISIJ Int., 2008, vol. 48, pp. 1033–35.CrossRef
22.
go back to reference L.M. Li, Z.Q. Liu, M.X. Cao, and B.K. Li: JOM, 2015, vol. 67, pp. 1459–67.CrossRef L.M. Li, Z.Q. Liu, M.X. Cao, and B.K. Li: JOM, 2015, vol. 67, pp. 1459–67.CrossRef
23.
24.
25.
go back to reference Q. Cao, A. Pitts, and L. Nastac: Ironmak. Steelmak., 2018, vol. 45, pp. 280–87.CrossRef Q. Cao, A. Pitts, and L. Nastac: Ironmak. Steelmak., 2018, vol. 45, pp. 280–87.CrossRef
26.
go back to reference S. Cloete, J.E. Olsen, and P. Skjetne: Appl. Ocean Res., 2009, vol. 31, pp. 220–25.CrossRef S. Cloete, J.E. Olsen, and P. Skjetne: Appl. Ocean Res., 2009, vol. 31, pp. 220–25.CrossRef
27.
go back to reference S. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16–24.CrossRef S. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, pp. 16–24.CrossRef
28.
go back to reference E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1800365.CrossRef E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1800365.CrossRef
29.
go back to reference E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Palovaara, A.K. Kumar Gupta, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1900088.CrossRef E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Palovaara, A.K. Kumar Gupta, and T. Fabritius: Steel Res. Int., 2019, vol. 90, p. 1900088.CrossRef
30.
go back to reference V.T. Mantripragada and S. Sarkar: Can. Metal. Q., 2020, vol. 59, pp. 159–68.CrossRef V.T. Mantripragada and S. Sarkar: Can. Metal. Q., 2020, vol. 59, pp. 159–68.CrossRef
31.
go back to reference B.H. Zhu, B. Zhang, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 898–905.CrossRef B.H. Zhu, B. Zhang, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 898–905.CrossRef
32.
go back to reference R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 628–48.CrossRef R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 628–48.CrossRef
33.
go back to reference R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: ISIJ Int., 2019, vol. 59, pp. 1224–33.CrossRef R.D. Morales, F.A. Calderón-Hurtado, and K. Chattopadhyay: ISIJ Int., 2019, vol. 59, pp. 1224–33.CrossRef
34.
go back to reference M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55, p. 3630.CrossRef M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55, p. 3630.CrossRef
35.
go back to reference Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1494–1509.CrossRef Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1494–1509.CrossRef
36.
go back to reference Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: JOM, 2016, vol. 68, pp. 3126–33.CrossRef Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou: JOM, 2016, vol. 68, pp. 3126–33.CrossRef
37.
38.
go back to reference G. Venturini and M. Goldschmit: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 461–75.CrossRef G. Venturini and M. Goldschmit: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 461–75.CrossRef
39.
go back to reference B.K. Li, H.B. Yin, C.Q. Zhou, and F. Tsukihashi: ISIJ Int., 2008, vol. 48, pp. 1704–11.CrossRef B.K. Li, H.B. Yin, C.Q. Zhou, and F. Tsukihashi: ISIJ Int., 2008, vol. 48, pp. 1704–11.CrossRef
40.
go back to reference F.P. Maldonado, M.A. Ramirez, A. Conejo, and C. Gonzalez: ISIJ Int., 2011, vol. 51, pp. 1110–18.CrossRef F.P. Maldonado, M.A. Ramirez, A. Conejo, and C. Gonzalez: ISIJ Int., 2011, vol. 51, pp. 1110–18.CrossRef
41.
go back to reference F. Karouni, B.P. Wynne, J. Talamantes-Silva, and S. Phillips: Steel Res. Int., 2018, vol. 89, p. 1700550.CrossRef F. Karouni, B.P. Wynne, J. Talamantes-Silva, and S. Phillips: Steel Res. Int., 2018, vol. 89, p. 1700550.CrossRef
42.
go back to reference V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.P. Bellot: ISIJ Int., 2012, vol. 52, pp. 1273–80.CrossRef V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.P. Bellot: ISIJ Int., 2012, vol. 52, pp. 1273–80.CrossRef
43.
go back to reference J.P. Bellot, V. De Felice, B. Dussoubs, A. Jardy, and S. Hans: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 13–21.CrossRef J.P. Bellot, V. De Felice, B. Dussoubs, A. Jardy, and S. Hans: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 13–21.CrossRef
44.
45.
go back to reference Q. Pan, S.T. Johansen, J.E. Olsen, M. Reed, and L.R. Sætrana: Chem. Eng. Sci., 2021, vol. 229, p. 116059.CrossRef Q. Pan, S.T. Johansen, J.E. Olsen, M. Reed, and L.R. Sætrana: Chem. Eng. Sci., 2021, vol. 229, p. 116059.CrossRef
46.
go back to reference M.Y. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int., 1995, vol. 35, pp. 472–79.CrossRef M.Y. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int., 1995, vol. 35, pp. 472–79.CrossRef
47.
go back to reference M.Y. Zhu, I. Sawada, and N. Yamasaki: ISIJ Int., 1996, vol. 36, pp. 503–11.CrossRef M.Y. Zhu, I. Sawada, and N. Yamasaki: ISIJ Int., 1996, vol. 36, pp. 503–11.CrossRef
48.
go back to reference L. Jonsson, D. Sichen, and P. Jönsson: ISIJ Int., 1998, vol. 38, pp. 260–67.CrossRef L. Jonsson, D. Sichen, and P. Jönsson: ISIJ Int., 1998, vol. 38, pp. 260–67.CrossRef
49.
go back to reference Y. Sheng and G.A. Irons: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 695–705.CrossRef Y. Sheng and G.A. Irons: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 695–705.CrossRef
50.
51.
go back to reference H. Zhang, A.N. Conejo, A. Dutta, M.A. Ramírez-Argáez, and H. Yan: Ironmak. Steelmak., 2022, vol. 49, p. 2078263. H. Zhang, A.N. Conejo, A. Dutta, M.A. Ramírez-Argáez, and H. Yan: Ironmak. Steelmak., 2022, vol. 49, p. 2078263.
52.
go back to reference W.J. Liu, J. Lee, X.P. Guo, A.K. Silaen, and C.Q. Zhou: Steel Res. Int., 2019, vol. 90, p. 1800396.CrossRef W.J. Liu, J. Lee, X.P. Guo, A.K. Silaen, and C.Q. Zhou: Steel Res. Int., 2019, vol. 90, p. 1800396.CrossRef
53.
54.
go back to reference C. Pena-Monferrer, G. Monros-Andreu, S. Chiva, R. Martinez-Cuenca, and J.L. Munoz-Cobo: Chem. Eng. Sci., 2018, vol. 177, pp. 537–56.CrossRef C. Pena-Monferrer, G. Monros-Andreu, S. Chiva, R. Martinez-Cuenca, and J.L. Munoz-Cobo: Chem. Eng. Sci., 2018, vol. 177, pp. 537–56.CrossRef
55.
go back to reference H. Takeda, N. Esaki, K. Doi, H. Murakami, K. Yamasaki, and Y. Kawase: J. Chem. Eng. Jpn., 2004, vol. 37, pp. 976–89.CrossRef H. Takeda, N. Esaki, K. Doi, H. Murakami, K. Yamasaki, and Y. Kawase: J. Chem. Eng. Jpn., 2004, vol. 37, pp. 976–89.CrossRef
56.
go back to reference W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3196–3212.CrossRef W.T. Lou and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3196–3212.CrossRef
57.
go back to reference X. Guo, J. Godinez, N.J. Walla, A.K. Silaen, H. Oltmann, V. Thapliyal, A. Bhansali, E. Pretorius, and C.Q. Zhou: Processes, 2021, vol. 9, p. 1048.CrossRef X. Guo, J. Godinez, N.J. Walla, A.K. Silaen, H. Oltmann, V. Thapliyal, A. Bhansali, E. Pretorius, and C.Q. Zhou: Processes, 2021, vol. 9, p. 1048.CrossRef
59.
go back to reference M. Saeedipour and S. Schneiderbauer: Int. J. Multiphase Flow, 2021, vol. 144, p. 103790.CrossRef M. Saeedipour and S. Schneiderbauer: Int. J. Multiphase Flow, 2021, vol. 144, p. 103790.CrossRef
60.
go back to reference A. Bußmann, J. Buchmeier, M.S. Dodd, S. Adami, and I. Bermejo-Moreno: Comput. Fluids, 2022, vol. 248, p. 105665.CrossRef A. Bußmann, J. Buchmeier, M.S. Dodd, S. Adami, and I. Bermejo-Moreno: Comput. Fluids, 2022, vol. 248, p. 105665.CrossRef
61.
go back to reference Q. Li and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1532–49.CrossRef Q. Li and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1532–49.CrossRef
63.
go back to reference J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335–54.CrossRef J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335–54.CrossRef
64.
65.
66.
go back to reference C.M. Winkler and S.L. Rani: Int. J. Numer. Methods H, 2006, vol. 16(2), pp. 226–39.CrossRef C.M. Winkler and S.L. Rani: Int. J. Numer. Methods H, 2006, vol. 16(2), pp. 226–39.CrossRef
68.
go back to reference M. Lesieur and O. Metais: Annu. Rev. Fluid Mech., 1996, vol. 28, pp. 45–82.CrossRef M. Lesieur and O. Metais: Annu. Rev. Fluid Mech., 1996, vol. 28, pp. 45–82.CrossRef
69.
go back to reference K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 411–18.CrossRef K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 411–18.CrossRef
70.
go back to reference P.E. Anagbo, J.K. Brimacombe, and A.H. Castillejos: Can. Metal. Q., 1989, vol. 28, pp. 323–30.CrossRef P.E. Anagbo, J.K. Brimacombe, and A.H. Castillejos: Can. Metal. Q., 1989, vol. 28, pp. 323–30.CrossRef
71.
72.
go back to reference C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 2012. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, 2012.
73.
go back to reference L.M. Li, Z.Q. Liu, B.K. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 1337–46.CrossRef L.M. Li, Z.Q. Liu, B.K. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 1337–46.CrossRef
74.
go back to reference A.M. Amaro-villeda, M.A. Ramirez-argaez, and A.N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1–8.CrossRef A.M. Amaro-villeda, M.A. Ramirez-argaez, and A.N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1–8.CrossRef
75.
go back to reference M.S.C. Terrazas and A.N. Conejo: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 711–18.CrossRef M.S.C. Terrazas and A.N. Conejo: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 711–18.CrossRef
Metadata
Title
Large Bubble-Resolved Direct Numerical Simulation for Multiphase Flow Applied to Gas-Stirred Ladles: Grid Resolution and Plug Eccentricity Effects
Authors
Qiang Li
Petrus Christiaan Pistorius
Publication date
20-03-2023
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2023
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-023-02762-z

Other articles of this Issue 3/2023

Metallurgical and Materials Transactions B 3/2023 Go to the issue

Premium Partners