Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2016

01-08-2016 | Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel

Authors: A. M. Escamilla-Pérez, N. Louvain, M. Kaschowitz, S. Freunberger, O. Fontaine, B. Boury, N. Brun, P. H. Mutin

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres were prepared by non-hydrolytic sol–gel from TiCl4, VOCl3, and iPr2O at 110 °C without any solvent or additives. The samples were characterized by elemental analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, nitrogen physisorption, and impedance measurements. At low vanadium loadings, only TiO2 anatase was detected, and V2O5 scherbinaite was also detected at high vanadium loadings. The texture of the samples depended on the V loading, but all the samples appeared built of primary nanoparticles (≈10–20 nm in size) that aggregate to form mesoporous micron-sized spheres. The lithium insertion properties of these materials were evaluated by galvanostatic measurements taken using coin-type cells, in view of their application as electrode for rechargeable Li-ion batteries. The mesoporous TiO2 microspheres showed good performances, with a specific reversible capacity of 145 and 128 mAh g−1 at C/2 and C, respectively (C = 335.6 mA g−1), good coulombic efficiency, and a moderate capacity fade (6 %) from the 2nd to the 20th cycle at C/20. Although the addition of V effectively increased the electronic conductivity of the powders, the specific reversible capacity and cycling performances of the TiO2–V2O5 samples were only minimally improved for a 5 at% V loading and were lower at higher V loading.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596CrossRef Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596CrossRef
2.
go back to reference Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A 1:11504–11512CrossRef Mutin PH, Vioux A (2013) Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. J Mater Chem A 1:11504–11512CrossRef
3.
go back to reference Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304CrossRef Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304CrossRef
4.
go back to reference Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725CrossRef Bilecka I, Niederberger M (2010) New developments in the nonaqueous and/or non-hydrolytic sol-gel synthesis of inorganic nanoparticles. Electrochim Acta 55:7717–7725CrossRef
5.
go back to reference Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A 451:192–206CrossRef Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl Catal A 451:192–206CrossRef
6.
go back to reference Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21:5881–5890CrossRef Bilecka I, Hintennach A, Rossell MD, Xie D, Novak P, Niederberger M (2011) Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. J Mater Chem 21:5881–5890CrossRef
7.
go back to reference Yu S-H, Pucci A, Herntrich T, Willinger M-G, Baek S-H, Sung Y-E, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810CrossRef Yu S-H, Pucci A, Herntrich T, Willinger M-G, Baek S-H, Sung Y-E, Pinna N (2011) Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J Mater Chem 21:806–810CrossRef
8.
go back to reference Song T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31CrossRef Song T, Paik U (2016) TiO2 as an active or supplemental material for lithium batteries. J Mater Chem A 4:14–31CrossRef
9.
go back to reference Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269 Sudant G, Baudrin E, Larcher D, Tarascon J-M (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269
10.
go back to reference Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater (Weinheim, Ger) 19:2087–2091CrossRef Guo YG, Hu YS, Sigle W, Maier J (2007) Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater (Weinheim, Ger) 19:2087–2091CrossRef
11.
go back to reference Sondergaard M, Shen Y, Mamakhel A, Marinaro M, Wohlfahrt-Mehrens M, Wonsyld K, Dahl S, Iversen BB (2015) TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chem Mater 27:119–126CrossRef Sondergaard M, Shen Y, Mamakhel A, Marinaro M, Wohlfahrt-Mehrens M, Wonsyld K, Dahl S, Iversen BB (2015) TiO2 nanoparticles for Li-ion battery anodes: mitigation of growth and irreversible capacity using LiOH and NaOH. Chem Mater 27:119–126CrossRef
12.
go back to reference Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef
13.
go back to reference Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
14.
go back to reference Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 2006:2783–2785CrossRef Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 2006:2783–2785CrossRef
15.
go back to reference Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRef Deng D, Kim MG, Lee JY, Cho J (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2:818–837CrossRef
16.
go back to reference Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A. doi:10.1039/C5TA09323F Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A. doi:10.​1039/​C5TA09323F
17.
go back to reference Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X (2015) Titania nanomaterial as anode for lithium-ion rechargeable batteries. Energy Technol (Weinheim, Ger) 3:801–814 Yan X, Wang Z, He M, Hou Z, Xia T, Liu G, Chen X (2015) Titania nanomaterial as anode for lithium-ion rechargeable batteries. Energy Technol (Weinheim, Ger) 3:801–814
18.
go back to reference Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRef Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRef
19.
go back to reference Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRef Chen JS, Archer LA, Wen Lou X (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21:9912–9924CrossRef
20.
go back to reference Anh LT, Rai AK, Thi TV, Gim J, Kim S, Shin E-C, Lee J-S, Kim J (2013) Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J Power Sources 243:891–898CrossRef Anh LT, Rai AK, Thi TV, Gim J, Kim S, Shin E-C, Lee J-S, Kim J (2013) Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J Power Sources 243:891–898CrossRef
21.
go back to reference Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Roziere J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835CrossRef Fehse M, Cavaliere S, Lippens PE, Savych I, Iadecola A, Monconduit L, Jones DJ, Roziere J, Fischer F, Tessier C, Stievano L (2013) Nb-Doped TiO2 nanofibers for lithium ion batteries. J Phys Chem C 117:13827–13835CrossRef
22.
go back to reference Popa AF, Mutin PH, Vioux A, Delahay G, Coq B (2004) Novel non-hydrolytic synthesis of a V2O5–TiO2 xerogel for the selective catalytic reduction of NOx by ammonia. Chem Commun: 2214–2215 Popa AF, Mutin PH, Vioux A, Delahay G, Coq B (2004) Novel non-hydrolytic synthesis of a V2O5–TiO2 xerogel for the selective catalytic reduction of NOx by ammonia. Chem Commun: 2214–2215
23.
go back to reference Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Appl Catal B 94:38–45CrossRef Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P, Gaigneaux EM, Mutin PH (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5–TiO2 catalysts for VOC total oxidation. Appl Catal B 94:38–45CrossRef
24.
go back to reference Ohsaka T, Izum F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRef Ohsaka T, Izum F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRef
25.
go back to reference Santangelo S, Messina G, Faggio G, Willinger MG, Pinna N, Donato A, Arena A, Donato N, Neri G (2010) Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond Relat Mater 19:590–594CrossRef Santangelo S, Messina G, Faggio G, Willinger MG, Pinna N, Donato A, Arena A, Donato N, Neri G (2010) Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond Relat Mater 19:590–594CrossRef
26.
go back to reference Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Modern Phys 81:999–1014CrossRef Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Modern Phys 81:999–1014CrossRef
27.
go back to reference Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRef Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21:3464–3472CrossRef
28.
go back to reference Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRef Wagemaker M, Borghols WJH, Mulder FM (2007) Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J Am Chem Soc 129:4323–4327CrossRef
29.
go back to reference Lafont U, Carta D, Mountjoy G, Chadwick AV, Kelder EM (2009) In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J Phys Chem C 114:1372–1378CrossRef Lafont U, Carta D, Mountjoy G, Chadwick AV, Kelder EM (2009) In situ structural changes upon electrochemical lithium insertion in nanosized anatase TiO2. J Phys Chem C 114:1372–1378CrossRef
30.
go back to reference Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR (2015) Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5:29535–29544CrossRef Reddy MV, Sharma N, Adams S, Rao RP, Peterson VK, Chowdari BVR (2015) Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5:29535–29544CrossRef
31.
go back to reference Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium–ion batteries. J Phys Chem C 115:2529–2536CrossRef Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium–ion batteries. J Phys Chem C 115:2529–2536CrossRef
32.
go back to reference Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130CrossRef
33.
go back to reference Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries. J Power Sources 191:614–618CrossRef
34.
go back to reference Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef
35.
go back to reference Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride−graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526CrossRef Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride−graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526CrossRef
36.
go back to reference Bao S-J, Bao Q-L, Li C-M, Zhi-Li D (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238CrossRef Bao S-J, Bao Q-L, Li C-M, Zhi-Li D (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238CrossRef
37.
go back to reference Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047CrossRef Xu J, Jia C, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047CrossRef
38.
go back to reference Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng Y-T (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677CrossRef Wu QL, Li J, Deshpande RD, Subramanian N, Rankin SE, Yang F, Cheng Y-T (2012) Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J Phys Chem C 116:18669–18677CrossRef
Metadata
Title
Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel
Authors
A. M. Escamilla-Pérez
N. Louvain
M. Kaschowitz
S. Freunberger
O. Fontaine
B. Boury
N. Brun
P. H. Mutin
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4037-9

Other articles of this Issue 2/2016

Journal of Sol-Gel Science and Technology 2/2016 Go to the issue

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Superhydrophobic adhesive surface on titanate nanotube brushes through surface modification by capric acid

Original Paper: Sol-gel, hybrids and solution chemistries

Heterobimetallic sol–gel precursors and intermediates

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray

Original Paper: Sol-gel, hybrids and solution chemistries

A photoresponsive azobenzene-bridged cubic silsesquioxane network

Premium Partners