Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 9/2020

24-06-2020

Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy

Authors: Shengya He, Chuanjun Li, Zhaojing Yuan, Weidong Xuan, Jiang Wang, Zhongming Ren

Published in: Metallurgical and Materials Transactions A | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transformation of liquid–solid interface induced by the steady magnetic field (SMF) in the directionally solidified Ni-10 wt pct Cr alloy was studied experimentally. At the moderate pulling rate (50 μm s−1), it could be observed that the interface morphology gradually transformed from planar to cellular shape with increasing the SMF intensity (0 T, 3 T, 6 T). However, the cellular interface at the high pulling rate (100 μm s−1) was not influenced by the SMF. 3D numerical simulations suggested that the transformation of interface morphology originated from the thermoelectric magnetic convection near the wavelike interface at the early stage of solidification. From the composition measurement, it was found that the formation of microsegregation at the moderate pulling rate was associated with the interface morphology. Under the 3 T SMF, the liquid–solid interface remained planar and the microsegregation level increased in comparison with that without the SMF. Under the 6 T SMF, the liquid–solid interface became cellular and the microsegregation level was reduced. The factors affecting microsegregation were evaluated. The effective partition coefficient was estimated based on composition data. It was revealed that the effective partition coefficient increased with the 6 T SMF due to the thermoelectric magnetic and magnetic damping effects within the cellular structure. Additionally, the solid diffusivity was measured using the diffusion couple technique. It was found that the interdiffusion coefficient of Cr decreased with increasing the SMF intensity. The modified Brody model was used to predict the microsegregation behavior in the SMF. The predicted results were in agreement with experimental observation. It could be concluded that the decrease in solid diffusivity enhanced the formation of microsegregation for the planar interface, whereas the increase in effective partition coefficient in the SMF was beneficial for alleviating the extent of microsegregation for the cellular interface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Darolia: Int. Mater. Rev., 2019, vol. 64, pp. 355-80. R. Darolia: Int. Mater. Rev., 2019, vol. 64, pp. 355-80.
2.
go back to reference F. Pyczak, B. Devrient, F. C. Neuner and H. Mughrabi: Acta Mater., 2005, vol. 53, pp. 3879-91. F. Pyczak, B. Devrient, F. C. Neuner and H. Mughrabi: Acta Mater., 2005, vol. 53, pp. 3879-91.
3.
go back to reference S. L. Shang, C. L. Zacherl, H. Z. Fang, Y. Wang, Y. Du and Z. K. Liu: J. Phys.: Condens. Matter, 2012, vol. 24, p. 505403. S. L. Shang, C. L. Zacherl, H. Z. Fang, Y. Wang, Y. Du and Z. K. Liu: J. Phys.: Condens. Matter, 2012, vol. 24, p. 505403.
4.
go back to reference B. Seiser, R. Drautz and D. G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749-63. B. Seiser, R. Drautz and D. G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749-63.
5.
go back to reference N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270-86. N. Zhou, D. C. Lv, H. L. Zhang, D. McAllister, F. Zhang, M. J. Mills and Y. Wang: Acta Mater., 2014, vol. 65, pp. 270-86.
6.
go back to reference G. X. Wang, V. Prasad and E. F. Matthys: Mater. Sci. Eng. A, 1997, vol. 225, pp. 47-58. G. X. Wang, V. Prasad and E. F. Matthys: Mater. Sci. Eng. A, 1997, vol. 225, pp. 47-58.
7.
go back to reference G. Kasperovich, T. Volkmann, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183–91. G. Kasperovich, T. Volkmann, L. Ratke and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1183–91.
8.
go back to reference M.S.A. Karunaratne, D.C. Cox, P. Carter and R.C. Reed: Superalloys, 2000, vol. 20, pp. 263-72. M.S.A. Karunaratne, D.C. Cox, P. Carter and R.C. Reed: Superalloys, 2000, vol. 20, pp. 263-72.
9.
go back to reference S. N. Samaras and G. N. Haidemenopoulos: J. Mater. Process. Technol., 2007, vol. 194, pp. 63-73. S. N. Samaras and G. N. Haidemenopoulos: J. Mater. Process. Technol., 2007, vol. 194, pp. 63-73.
10.
go back to reference P. Rudolph and K. Kakimoto: MRS Bull., 2009, vol. 34, pp. 251-58. P. Rudolph and K. Kakimoto: MRS Bull., 2009, vol. 34, pp. 251-58.
11.
go back to reference S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren (2020) Acta Metall. Sin. 33:267–74 S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren (2020) Acta Metall. Sin. 33:267–74
12.
go back to reference D. Chen, H. Zhang, H. Jiang and J. Cui: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 500-05. D. Chen, H. Zhang, H. Jiang and J. Cui: Materialwiss. Werkstofftech., 2011, vol. 42, pp. 500-05.
13.
go back to reference W. V. Youdelis and R. C. Dorwar: Can. J. Phys., 1966, vol. 44, pp. 139-50. W. V. Youdelis and R. C. Dorwar: Can. J. Phys., 1966, vol. 44, pp. 139-50.
14.
go back to reference X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367-81.
15.
go back to reference D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40. D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 833-40.
16.
go back to reference Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3373-82. Z. Shen, B. Zhou, Y. Zhong, L. Dong, H. Wang, L. Fan, T. Zheng, C. Li, W. Ren, W. Xuan and Z. Ren: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3373-82.
17.
go back to reference X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle and F. Debray: J. Mater. Res., 2013, vol. 28, pp. 2810-18. X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle and F. Debray: J. Mater. Res., 2013, vol. 28, pp. 2810-18.
18.
go back to reference X. Li, Y. Fautrelle, Z. M. Ren, A. Gagnoud, R. Moreau, Y. D. Zhang and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689-701. X. Li, Y. Fautrelle, Z. M. Ren, A. Gagnoud, R. Moreau, Y. D. Zhang and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689-701.
19.
go back to reference L. Hou, Y. C. Dai, Y. Fautrelle, Z. B. Li, Z. M. Ren, C. Esling and X. Li: J. Alloys Compd., 2018, vol. 758, pp. 54-61. L. Hou, Y. C. Dai, Y. Fautrelle, Z. B. Li, Z. M. Ren, C. Esling and X. Li: J. Alloys Compd., 2018, vol. 758, pp. 54-61.
20.
go back to reference W. L. Ren, L. Lu, G. Z. Yuan, W. D. Xuan, Y. B. Zhong, J. B. Yu and Z. M. Ren: Mater. Lett., 2013, vol. 100, pp. 223-26. W. L. Ren, L. Lu, G. Z. Yuan, W. D. Xuan, Y. B. Zhong, J. B. Yu and Z. M. Ren: Mater. Lett., 2013, vol. 100, pp. 223-26.
21.
go back to reference W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren and P. K. Liaw: Sci. Rep., 2018, vol. 8, pp. 1-17. W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren and P. K. Liaw: Sci. Rep., 2018, vol. 8, pp. 1-17.
22.
go back to reference J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-42. J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-42.
23.
go back to reference X. Li, Y. Fautrelle and Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 3803-13. X. Li, Y. Fautrelle and Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 3803-13.
24.
go back to reference S. He, C. Li, R. Guo, W. Xuan, J. Wang and Z. Ren: J. Alloys Compd., 2019, vol. 800, pp. 41-49. S. He, C. Li, R. Guo, W. Xuan, J. Wang and Z. Ren: J. Alloys Compd., 2019, vol. 800, pp. 41-49.
25.
go back to reference H.D. Brody: Solute redistribution in dendritic solidification. Massachusetts Institute of Technology, the USA, 1965, pp. 20–55. H.D. Brody: Solute redistribution in dendritic solidification. Massachusetts Institute of Technology, the USA, 1965, pp. 20–55.
26.
go back to reference H. Engelhardt and M. Rettenmayr: Acta Mater., 2015, vol. 95, pp. 212-15. H. Engelhardt and M. Rettenmayr: Acta Mater., 2015, vol. 95, pp. 212-15.
27.
go back to reference M. N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33. M. N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.
28.
go back to reference R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258-79. R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258-79.
29.
go back to reference Z. J. Yuan, Z. M. Ren, C. J. Li, Q. Xiao, Q. L. Wang, Y. M. Dai and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340-42. Z. J. Yuan, Z. M. Ren, C. J. Li, Q. Xiao, Q. L. Wang, Y. M. Dai and H. Wang: Mater. Lett., 2013, vol. 108, pp. 340-42.
30.
go back to reference X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 1377-86. X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 1377-86.
31.
go back to reference J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. S. A. Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916. J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. S. A. Jaoude, G. Reinhart, N. Mangelinck-Noël, X. Li and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, p. 121916.
32.
go back to reference F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-55. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-55.
33.
go back to reference M. Yousuf, P. C. Sahu and K. G. Rajan: Phys. Rev. B, 1986, vol. 34, pp. 8086-100. M. Yousuf, P. C. Sahu and K. G. Rajan: Phys. Rev. B, 1986, vol. 34, pp. 8086-100.
34.
go back to reference T. P. Wang, C. D. Starr and N. Brown: Acta Metall., 1966, vol. 14, pp. 649-57. T. P. Wang, C. D. Starr and N. Brown: Acta Metall., 1966, vol. 14, pp. 649-57.
35.
go back to reference V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev and V. I. Kononenko: High Temp., 2003, vol. 41, pp. 762-70. V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev and V. I. Kononenko: High Temp., 2003, vol. 41, pp. 762-70.
36.
go back to reference K. Mukai, F. Xiao, K. Nogi and Z. Li: Mater. Trans., 2004, vol. 45, pp. 2357-63. K. Mukai, F. Xiao, K. Nogi and Z. Li: Mater. Trans., 2004, vol. 45, pp. 2357-63.
37.
go back to reference J. A. Burton, R. C. Prim and W. P. Slichter: J. Chem. Phys., 1953, vol. 21, pp. 1987-91. J. A. Burton, R. C. Prim and W. P. Slichter: J. Chem. Phys., 1953, vol. 21, pp. 1987-91.
38.
go back to reference T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–71. T. W. Clyne and W. Kurz: Metall. Trans. A, 1981, vol. 12, pp. 965–71.
39.
go back to reference D. H. Kirkwood: Mater. Sci. Eng., 1984, vol. 65, pp. 101-09. D. H. Kirkwood: Mater. Sci. Eng., 1984, vol. 65, pp. 101-09.
40.
go back to reference V. R. Voller: J. Cryst. Growth., 2001, vol. 226, pp. 562-68. V. R. Voller: J. Cryst. Growth., 2001, vol. 226, pp. 562-68.
41.
go back to reference W. V. Youdelis, D. R. Colton and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217-37. W. V. Youdelis, D. R. Colton and J. Cahoon: Can. J. Phys., 1964, vol. 42, pp. 2217-37.
42.
go back to reference S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida and A. Chiba: J. Mater. Sci., 2005, vol. 40, pp. 3191-98. S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida and A. Chiba: J. Mater. Sci., 2005, vol. 40, pp. 3191-98.
43.
go back to reference X. Ren, G. Q. Chen, W. L. Zhou, C. W. Wu and J. S. Zhang: J. Alloys Compd., 2009, vol. 472, pp. 525-29. X. Ren, G. Q. Chen, W. L. Zhou, C. W. Wu and J. S. Zhang: J. Alloys Compd., 2009, vol. 472, pp. 525-29.
44.
go back to reference J. M. Philibert: Atom movements-Diffusion and mass transport in solids. EDP Sciences, Les Ulis, France, 2012, pp. 33-61. J. M. Philibert: Atom movements-Diffusion and mass transport in solids. EDP Sciences, Les Ulis, France, 2012, pp. 33-61.
45.
go back to reference Y. Aoki, S. Hayashi and H. Komatsu: J. Cryst. Growth., 1992, vol. 123, pp. 313-16. Y. Aoki, S. Hayashi and H. Komatsu: J. Cryst. Growth., 1992, vol. 123, pp. 313-16.
46.
go back to reference F. Xiao, R. Yang, L. Fang and C. Zhang: Mater. Sci. Eng. B, 2006, vol. 132, pp. 193-96. F. Xiao, R. Yang, L. Fang and C. Zhang: Mater. Sci. Eng. B, 2006, vol. 132, pp. 193-96.
Metadata
Title
Magnetic-Field-Induced Liquid–Solid Interface Transformation and Its Effect on Microsegregation in Directionally Solidified Ni-Cr Alloy
Authors
Shengya He
Chuanjun Li
Zhaojing Yuan
Weidong Xuan
Jiang Wang
Zhongming Ren
Publication date
24-06-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 9/2020
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-05887-x

Other articles of this Issue 9/2020

Metallurgical and Materials Transactions A 9/2020 Go to the issue

The 2018 Distinguished Lectureship in Materials and Society

The Ecosystem of Research, Education, and Community

Topical Collection: Biodegradable Materials for Medical Applications II

Highly Ductile Zn-2Fe-WC Nanocomposite as Biodegradable Material

Premium Partners