Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2018

01-10-2018 | Research Paper

Magnetic micellar nanocarrier based on pH-sensitive PEG-PCL-PEG triblock copolymer: a potential carrier for hydrophobic anticancer drugs

Authors: Ali Pourjavadi, Lida Dastanpour, Zahra Mazaheri Tehrani

Published in: Journal of Nanoparticle Research | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, we report a magnetic pH-sensitive polymeric micelle designed for hydrophobic drug carrier in cancer treatment. This carrier was prepared by self-assembly of biodegradable triblock copolymer PEG-PCL-PEG coated on oleate-modified magnetic nanoparticles. The amphiphilic triblock copolymer was synthesized via reaction between the aldehyde group from the hydrophilic component with the amine group of the hydrophobic component. The resulting Schiff base linkage was sensitive to pH. The structure of nanocarrier was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Morphology and size of the magnetic micellar nanoparticles were characterized by high-resolution transmission microscope (HR-TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). The size of magnetic micellar vehicle was observed to be about 90 nm. Nano-sized vehicles have made them suitable for prolonged circulation and accumulation in tumor tissue. Also, the drug release profile was studied at pH = 5.5 (tumor tissue) and pH = 7.4 (healthy tissue) at 37 °C during 80 h, showing a higher rate for drug release at acidic media. In addition, the comparison between the release profile of MNP@PEG-PCL-PEG and MNP@PEG-PCL revealed the superior performance of MNP@PEG-PCL-PEG in terms of its slow release feature. The cytotoxicity of the magnetic nanocarrier was evaluated using MTT assay on MCF-7 cells in vitro conditions, revealing the killing of cancer cells. Therefore, the carrier may have considerable potential as a hydrophobic drug carrier for cancer treatment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ai H, Flask C, Weinberg B, Shuai XT (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949–1952CrossRef Ai H, Flask C, Weinberg B, Shuai XT (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949–1952CrossRef
go back to reference Athanasiou KA, Niederauer GG (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials 17:93–102CrossRef Athanasiou KA, Niederauer GG (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers. Biomaterials 17:93–102CrossRef
go back to reference Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterial 32:6291–6301CrossRef Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterial 32:6291–6301CrossRef
go back to reference Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33CrossRef Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33CrossRef
go back to reference Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7:1913–1920CrossRef Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7:1913–1920CrossRef
go back to reference Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295CrossRef Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295CrossRef
go back to reference Gillies ER, Fréchet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43CrossRef Gillies ER, Fréchet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43CrossRef
go back to reference Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528CrossRef
go back to reference Harris JM, Struck EC, Case MG (1984) Synthesis and characterization of poly (ethylene glycol) derivatives. J Polym Sci 22:341–352 Harris JM, Struck EC, Case MG (1984) Synthesis and characterization of poly (ethylene glycol) derivatives. J Polym Sci 22:341–352
go back to reference Izunobi JU, Higginbotham CL (2011) Polymer molecular weight analysis by 1H NMR Spectroscopy. J Chem Educ 88:1098–1104CrossRef Izunobi JU, Higginbotham CL (2011) Polymer molecular weight analysis by 1H NMR Spectroscopy. J Chem Educ 88:1098–1104CrossRef
go back to reference Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309CrossRef Kwon GS, Kataoka K (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309CrossRef
go back to reference Lan Q, Liu C, Yang F, Liu S, Xu J, Sun D (2007) Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci 310:260–269CrossRef Lan Q, Liu C, Yang F, Liu S, Xu J, Sun D (2007) Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci 310:260–269CrossRef
go back to reference Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170CrossRef Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170CrossRef
go back to reference Li Z, Chau Y (2009) Synthesis of linear polyether Polyol derivatives as new materials for bioconjugation. Bioconjug Chem 20:780–789CrossRef Li Z, Chau Y (2009) Synthesis of linear polyether Polyol derivatives as new materials for bioconjugation. Bioconjug Chem 20:780–789CrossRef
go back to reference Liu L, Zheng M, Librizzi D, Renette T, Merkel OM, Kissel T (2016) Efficient and tumor targeted siRNA delivery by Polyethylenimine-graft-polycaprolactone-block-poly (ethylene glycol)-folate (PEI–PCL–PEG–Fol). Mol Pharm 13:34–143 Liu L, Zheng M, Librizzi D, Renette T, Merkel OM, Kissel T (2016) Efficient and tumor targeted siRNA delivery by Polyethylenimine-graft-polycaprolactone-block-poly (ethylene glycol)-folate (PEI–PCL–PEG–Fol). Mol Pharm 13:34–143
go back to reference Liu XQ, Ma ZY, Xing JM, Liu HZ (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6CrossRef Liu XQ, Ma ZY, Xing JM, Liu HZ (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6CrossRef
go back to reference Luo S, Zhang Y, Cao J, He B, Li S (2016) Arginine modified polymeric micelles as a novel drug delivery system with enhanced endocytosis efficiency. Colloids Surf B 148:181–192CrossRef Luo S, Zhang Y, Cao J, He B, Li S (2016) Arginine modified polymeric micelles as a novel drug delivery system with enhanced endocytosis efficiency. Colloids Surf B 148:181–192CrossRef
go back to reference Mu C, Fan X, Tian W, Bai Y, Yang Z, Fan W, Chen H (2012) Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polym Chem 3:3330–3339CrossRef Mu C, Fan X, Tian W, Bai Y, Yang Z, Fan W, Chen H (2012) Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polym Chem 3:3330–3339CrossRef
go back to reference Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589CrossRef Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589CrossRef
go back to reference Peng P, Wenshou W, Xuesi C, Xiabin J (2005) Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592CrossRef Peng P, Wenshou W, Xuesi C, Xiabin J (2005) Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592CrossRef
go back to reference Ranjha NM, Ayub G, Naseem S, Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21:2805–2816CrossRef Ranjha NM, Ayub G, Naseem S, Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21:2805–2816CrossRef
go back to reference Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990CrossRef Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990CrossRef
go back to reference Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878CrossRef Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878CrossRef
go back to reference Rösler A, Vandermeulen GWM, Klok HA (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 64:270–279CrossRef Rösler A, Vandermeulen GWM, Klok HA (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 64:270–279CrossRef
go back to reference Sharma A, Sharma US (1997) Liposomes in drug delivery: Progress and limitations. Int J Pharm 154:123–140CrossRef Sharma A, Sharma US (1997) Liposomes in drug delivery: Progress and limitations. Int J Pharm 154:123–140CrossRef
go back to reference Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410CrossRef Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410CrossRef
go back to reference Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRef Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRef
go back to reference Smithlan A, Hunneyball M (1986) Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm 30:215–220CrossRef Smithlan A, Hunneyball M (1986) Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm 30:215–220CrossRef
go back to reference Tang H, Guo J, Sun Y, Chang B, Ren Q, Yang W (2011) Facile synthesis of pH sensitie polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int J Pharm 421:388–396CrossRef Tang H, Guo J, Sun Y, Chang B, Ren Q, Yang W (2011) Facile synthesis of pH sensitie polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Int J Pharm 421:388–396CrossRef
go back to reference Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomater 22:405–417CrossRef Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomater 22:405–417CrossRef
go back to reference Vilara G, Tulla-Puchea J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394CrossRef Vilara G, Tulla-Puchea J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394CrossRef
go back to reference Wang G, Yang S, Wei Z, Dong X, Wang H, Qi M (2013) Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polym Bull 70:2359–2371CrossRef Wang G, Yang S, Wei Z, Dong X, Wang H, Qi M (2013) Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polym Bull 70:2359–2371CrossRef
Metadata
Title
Magnetic micellar nanocarrier based on pH-sensitive PEG-PCL-PEG triblock copolymer: a potential carrier for hydrophobic anticancer drugs
Authors
Ali Pourjavadi
Lida Dastanpour
Zahra Mazaheri Tehrani
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2018
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4366-4

Other articles of this Issue 10/2018

Journal of Nanoparticle Research 10/2018 Go to the issue

Premium Partners