Skip to main content
Top
Published in: Mechanics of Composite Materials 4/2018

18-09-2018

Mathematical Model for Diagnosing Strains by an Optical Fiber Sensor with a Distributed Bragg Grating According to the Solution of a Fredholm Integral Equation

Author: A. A. Pan’kov

Published in: Mechanics of Composite Materials | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mathematical model for the diagnostics of strain distribution along a optical fiber sensor (light guide) with a base distributed weakly reflecting fiber Bragg grating is developed. In the initial, undeformed state, the base Bragg grating has a constant period along the light guide. The base uniform Bragg grating is transformed to a nonuniform one as a result of emergence of nonuniform axial strains along the light guide. These changes in the period of Bragg grating lead to corresponding informative changes in reflection coefficients for various lengths of the waves entering into the optical fiber. As a result, the problem on finding the required density distribution function of axial strains along the optical fiber is reduced to solution of the Fredholm integral equation of the 1st kind by using the measured values of derivatives of reflection coefficients at the exit of the light guide. The results of numerical modeling of the spectra of coefficients of reflection from the nonuniform deformed Bragg grating are presented for various model and real distribution laws of diagnosed strains along the light guide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Okosi, Optical Fiber Sensors [in Russian], L., Energoatomizdat (1999). T. Okosi, Optical Fiber Sensors [in Russian], L., Energoatomizdat (1999).
2.
go back to reference A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing - physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010).CrossRef A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing - physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010).CrossRef
3.
go back to reference R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg grating,” Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin Heidelberg, 413-439 (2012). R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg grating,” Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin Heidelberg, 413-439 (2012).
4.
go back to reference M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials & Structures, 12, No. 6, 914-924 (2003).CrossRef M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials & Structures, 12, No. 6, 914-924 (2003).CrossRef
5.
go back to reference S. V.Valzhel’, Fiber Bragg Grating [in Russian], SPb: Universitety ITMO (2015). S. V.Valzhel’, Fiber Bragg Grating [in Russian], SPb: Universitety ITMO (2015).
6.
go back to reference K. V. Tatmyshevskii, “ Mechanoluminiscent sensor: mathematical model and dynamic properties,” Prib. Sist., Upravl., Kontrol, Diagn., No. 4, 35-39 (2005). K. V. Tatmyshevskii, “ Mechanoluminiscent sensor: mathematical model and dynamic properties,” Prib. Sist., Upravl., Kontrol, Diagn., No. 4, 35-39 (2005).
7.
go back to reference Patent RU №2630537. Optical fiber pressure sensor, A. A. Pan’kov, publ. 11.09.201, Bull. No. 26; application RU No. 2016136058, 09.06.2016. Patent RU №2630537. Optical fiber pressure sensor, A. A. Pan’kov, publ. 11.09.201, Bull. No. 26; application RU No. 2016136058, 09.06.2016.
8.
go back to reference A. A. Pan’kov, “Mathematical modeling of the piezoelectroluminiscence effect and diagnostics of pressure distribution along an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 4, 259-272 (2016). A. A. Pan’kov, “Mathematical modeling of the piezoelectroluminiscence effect and diagnostics of pressure distribution along an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 4, 259-272 (2016).
9.
go back to reference A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 229-242. (2017).CrossRef A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 229-242. (2017).CrossRef
10.
go back to reference Patent RU № 2643692. Optical fiber sensor of 3D stress state, A. A. Pan’kov, publ. 02.05.2018, Bull. No. 4; application No. 2017111405, 04.04.2017. Patent RU № 2643692. Optical fiber sensor of 3D stress state, A. A. Pan’kov, publ. 02.05.2018, Bull. No. 4; application No. 2017111405, 04.04.2017.
11.
go back to reference S. M. Popov and Yu. K. Chamorovskii, “Fiber lasers with an optical fiber resonator from with a continuous Bragg grating,” Abstracts of reports of the All-Russia Conference on Fiber Optics, Perm, October 7-9, 57-58 (2015). S. M. Popov and Yu. K. Chamorovskii, “Fiber lasers with an optical fiber resonator from with a continuous Bragg grating,” Abstracts of reports of the All-Russia Conference on Fiber Optics, Perm, October 7-9, 57-58 (2015).
12.
go back to reference A. V. Burdin, A. A. Vasilets, V. A. Burdin, and O. G. Morozov, “A distributed sensor based on multimode optical fibers supplemented with a fiber Bragg grating and functioning in a lowmode regime of signal transfer,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 25-26 (2016). A. V. Burdin, A. A. Vasilets, V. A. Burdin, and O. G. Morozov, “A distributed sensor based on multimode optical fibers supplemented with a fiber Bragg grating and functioning in a lowmode regime of signal transfer,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 25-26 (2016).
13.
go back to reference S. M. Popov, O. V. Butov, V. V. Voloshin, I. L. Vorobjev, M. Yu. Vyatkin, A. O. Kolosovskii, and Yu. K. Chamorovskii, “OFTD optical fibers reflectometry with a distributed Bragg-type reflector,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 36-38 (2016). S. M. Popov, O. V. Butov, V. V. Voloshin, I. L. Vorobjev, M. Yu. Vyatkin, A. O. Kolosovskii, and Yu. K. Chamorovskii, “OFTD optical fibers reflectometry with a distributed Bragg-type reflector,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 36-38 (2016).
14.
go back to reference S. S. Yakushin, A. V. Dostovalov, A. A. Vol’f, A. V. Parygin, and S. A. Babin, “Measuring of the size and positions of point-type temperature actions on long VBR,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 39-40 (2016). S. S. Yakushin, A. V. Dostovalov, A. A. Vol’f, A. V. Parygin, and S. A. Babin, “Measuring of the size and positions of point-type temperature actions on long VBR,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 39-40 (2016).
15.
go back to reference A. P. Ovvyan, “Calculation homogeneous and inhomogeneous Bragg fiber gratings,” Molodezhn. Nauch. Tekhn. Vest., Elektron. Zhurn., Izd. FGBOU VPO, N. E. Bauman MGTU, No. 6 (2012). A. P. Ovvyan, “Calculation homogeneous and inhomogeneous Bragg fiber gratings,” Molodezhn. Nauch. Tekhn. Vest., Elektron. Zhurn., Izd. FGBOU VPO, N. E. Bauman MGTU, No. 6 (2012).
16.
go back to reference S. G. Alyushina, P. E. Denisenko, O. G. Morozova, et al., “Fiber Bragg gratings with a phase structure in informationmeasurement systems,” Nelineinyi Mir, 9, No. 8, 522-528 (2011). S. G. Alyushina, P. E. Denisenko, O. G. Morozova, et al., “Fiber Bragg gratings with a phase structure in informationmeasurement systems,” Nelineinyi Mir, 9, No. 8, 522-528 (2011).
17.
go back to reference Y. Wang, J. Gong, D. Y. Wang, et al., “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef Y. Wang, J. Gong, D. Y. Wang, et al., “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef
18.
go back to reference A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, No. 12, 4309-4341 (1997).CrossRef A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, No. 12, 4309-4341 (1997).CrossRef
19.
go back to reference J. Sipe, L. Poladian, and C. Martinjn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am., 11, No. 4, 1307-1320 (1994).CrossRef J. Sipe, L. Poladian, and C. Martinjn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am., 11, No. 4, 1307-1320 (1994).CrossRef
20.
go back to reference T. Erdogan, “Fiber grating spectra,” J. of Lightwave Technol., 15, No. 8, 1277-1294 (1997).CrossRef T. Erdogan, “Fiber grating spectra,” J. of Lightwave Technol., 15, No. 8, 1277-1294 (1997).CrossRef
21.
go back to reference E. Rigas, R. Correia, N.,A.,Stathopoulos, S.,P. Savaidis, S.,W. James, D. Bhattacharyya, P. B. Kirby, and R. P. Tatam, “Evaluation of the optical switching characteristics of erbium-doped fibers for the development of a fiber Bragg grating sensor interrogator,” 23rd Int. Conf. on Optical Fiber Sensors (OFS23) Cantabria, Spain, 2-6 June (2014); http://proceedings.spiedigitallibrary.org E. Rigas, R. Correia, N.,A.,Stathopoulos, S.,P. Savaidis, S.,W. James, D. Bhattacharyya, P. B. Kirby, and R. P. Tatam, “Evaluation of the optical switching characteristics of erbium-doped fibers for the development of a fiber Bragg grating sensor interrogator,” 23rd Int. Conf. on Optical Fiber Sensors (OFS23) Cantabria, Spain, 2-6 June (2014); http://​proceedings.​spiedigitallibra​ry.​org
22.
go back to reference I. I. Nуreev, “Passive optical sensor networks and key questions of using fiber Bragg grating in them,” Elektron. Nauch. Zhurn., Inzh. Vestnik Dona, N0. 2 (2016). ivdon.ru/ru/magazine/archive/n2y2016/3605 I. I. Nуreev, “Passive optical sensor networks and key questions of using fiber Bragg grating in them,” Elektron. Nauch. Zhurn., Inzh. Vestnik Dona, N0. 2 (2016). ivdon.ru/ru/magazine/archive/n2y2016/3605
24.
go back to reference C. А. Babin, A. A. Vlasov, S. I. Kfblukov, and I. S. Shelemba, “Sensor system on the basis of optical fiber Bragg gratings,” Vest. NGU, ser. Fizika, 2, No. 3, 54-57 (2007). C. А. Babin, A. A. Vlasov, S. I. Kfblukov, and I. S. Shelemba, “Sensor system on the basis of optical fiber Bragg gratings,” Vest. NGU, ser. Fizika, 2, No. 3, 54-57 (2007).
25.
go back to reference I. I. Nureev, A. D. Sakhabutdinov, S. V. Feofilaktov, and D. A. Cherepanov, “Statement of problems on calibration of the combined pressure and temperature sensors Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 70-71 (2016). I. I. Nureev, A. D. Sakhabutdinov, S. V. Feofilaktov, and D. A. Cherepanov, “Statement of problems on calibration of the combined pressure and temperature sensors Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 70-71 (2016).
26.
go back to reference A. D. Sakhabutdinov, I. I. Nureev, S. V. Feofilaktov, D. A. Cherepanov, D. F Salahov, and O. G. Morozov, “Procedure of solution of problems on the calibration of combined pressure and temperature sensors,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 72-73 (2016). A. D. Sakhabutdinov, I. I. Nureev, S. V. Feofilaktov, D. A. Cherepanov, D. F Salahov, and O. G. Morozov, “Procedure of solution of problems on the calibration of combined pressure and temperature sensors,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 72-73 (2016).
27.
go back to reference Yu. N. Kul’chin, B. S. Notkin, and V. A. Sedov, “Neuro-iterative algorithm of tomographic reconstruction of distributed physical fields in optical fiber measurement systems,” Komput. Optika, 33, No. 4, 446-455 Yu. N. Kul’chin, B. S. Notkin, and V. A. Sedov, “Neuro-iterative algorithm of tomographic reconstruction of distributed physical fields in optical fiber measurement systems,” Komput. Optika, 33, No. 4, 446-455
28.
go back to reference Yu. N. Kul’chin, Distributed Optical Fiber Measurement Systems, [in Russian], M., Fizmatlit (2001). Yu. N. Kul’chin, Distributed Optical Fiber Measurement Systems, [in Russian], M., Fizmatlit (2001).
29.
go back to reference Tereschenko, Methods of Computer Tomography [in Russian], M., Fizmatlit (2004). Tereschenko, Methods of Computer Tomography [in Russian], M., Fizmatlit (2004).
30.
go back to reference F. Natterer, Mathematics of Computerized Tomography, John Wiley and Sons Ltd., N. Y. (1986). F. Natterer, Mathematics of Computerized Tomography, John Wiley and Sons Ltd., N. Y. (1986).
31.
go back to reference I. A. Zaitsev, O. V. Butov, V. V. Voloshin, I. L. Vorobyev, M. Yu. Vyatkin, A. O. Kolosovskii, S. М. Poov, and Yu. K. Chamorovskii, “Optical fiber with a distributed Bragg-type reflector,” Radiotekn. Elektronika, 61, No. 6, 602-608 (2016). I. A. Zaitsev, O. V. Butov, V. V. Voloshin, I. L. Vorobyev, M. Yu. Vyatkin, A. O. Kolosovskii, S. М. Poov, and Yu. K. Chamorovskii, “Optical fiber with a distributed Bragg-type reflector,” Radiotekn. Elektronika, 61, No. 6, 602-608 (2016).
32.
go back to reference V. P. Matveenko, V. A. Fedorova, and I. N. Shardakov, “Theoretical substantiation of the possibility of construction of an optical fiber system for monitoring deformations of Earth surface,” Izv. RAN, MTT, No. 5, 46-52 (2013). V. P. Matveenko, V. A. Fedorova, and I. N. Shardakov, “Theoretical substantiation of the possibility of construction of an optical fiber system for monitoring deformations of Earth surface,” Izv. RAN, MTT, No. 5, 46-52 (2013).
33.
go back to reference I. N. Shardakov, N. S., Sozonov, and R. V. Tsvetkov, “Experimental-theoretical foundations of automated systems of deformation monitoring with use of optical fiber elements,” Vest. Perm Nauch. Tsentr,. October-December, 91-95 (2016). I. N. Shardakov, N. S., Sozonov, and R. V. Tsvetkov, “Experimental-theoretical foundations of automated systems of deformation monitoring with use of optical fiber elements,” Vest. Perm Nauch. Tsentr,. October-December, 91-95 (2016).
34.
go back to reference M. A. Zuev, V. V. Mahsidov, M. Yu. Fedotov, and A. M. Shienok, “Integration of an optical fiber into PKM and measurement of strain of a material with the help of fiber Bragg grating,” Mekh, Kompos. Mat. and Struct., 20, No. 4, 568-574 (2014). M. A. Zuev, V. V. Mahsidov, M. Yu. Fedotov, and A. M. Shienok, “Integration of an optical fiber into PKM and measurement of strain of a material with the help of fiber Bragg grating,” Mekh, Kompos. Mat. and Struct., 20, No. 4, 568-574 (2014).
35.
go back to reference E. N. Kablov, D. V. Sivakov, I. N. Gulyaev, K. V. Sorokin, M. Yu. Fedotov, E. M. Dianov, S. A. Vasilyevm and O. I. Medvedkov, “Employment of an optical fiber as a strain sensor in for polymer composite materials,” All materials. Reference Book [in Russian], No. 3, 10-15 (2010). E. N. Kablov, D. V. Sivakov, I. N. Gulyaev, K. V. Sorokin, M. Yu. Fedotov, E. M. Dianov, S. A. Vasilyevm and O. I. Medvedkov, “Employment of an optical fiber as a strain sensor in for polymer composite materials,” All materials. Reference Book [in Russian], No. 3, 10-15 (2010).
36.
go back to reference I. G. Naimushin, N. A. Trufanov, and I. N. Shardakov, “Numerical analysis of deformation processes in an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 1, 104-116 (2012). I. G. Naimushin, N. A. Trufanov, and I. N. Shardakov, “Numerical analysis of deformation processes in an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 1, 104-116 (2012).
37.
go back to reference A. N. Anoshkin, A. A. Voronkov, N. A. Kosheleva, V. P. Matveenko, G. S. Serovaev, E. M. Spaskova, I. N. Shardakov. and G. S. Shipunova, “Measurement of nonuniform strain fields by the optical fiber sensor built in a polymer composite material,” Izv. RAN, МТТ, No. 5, 42-51 (2016). A. N. Anoshkin, A. A. Voronkov, N. A. Kosheleva, V. P. Matveenko, G. S. Serovaev, E. M. Spaskova, I. N. Shardakov. and G. S. Shipunova, “Measurement of nonuniform strain fields by the optical fiber sensor built in a polymer composite material,” Izv. RAN, МТТ, No. 5, 42-51 (2016).
38.
go back to reference V. P. Matveenko, I. N. Shardakov, and N. A. Kosheleva, “Estimation of technological strains in polymer composite samples by using built-in optical fiber strain sensors,” Abstr. Of reports of the XX Winter School on the Mechanics of Continuous Media, Perm, February 13-16, 2017, Ekaterinburg, RIO UrO RAN, 219 (2017). V. P. Matveenko, I. N. Shardakov, and N. A. Kosheleva, “Estimation of technological strains in polymer composite samples by using built-in optical fiber strain sensors,” Abstr. Of reports of the XX Winter School on the Mechanics of Continuous Media, Perm, February 13-16, 2017, Ekaterinburg, RIO UrO RAN, 219 (2017).
Metadata
Title
Mathematical Model for Diagnosing Strains by an Optical Fiber Sensor with a Distributed Bragg Grating According to the Solution of a Fredholm Integral Equation
Author
A. A. Pan’kov
Publication date
18-09-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 4/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9760-6

Other articles of this Issue 4/2018

Mechanics of Composite Materials 4/2018 Go to the issue

Premium Partners