Skip to main content
Erschienen in: Mechanics of Composite Materials 4/2018

18.09.2018

Mathematical Model for Diagnosing Strains by an Optical Fiber Sensor with a Distributed Bragg Grating According to the Solution of a Fredholm Integral Equation

verfasst von: A. A. Pan’kov

Erschienen in: Mechanics of Composite Materials | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model for the diagnostics of strain distribution along a optical fiber sensor (light guide) with a base distributed weakly reflecting fiber Bragg grating is developed. In the initial, undeformed state, the base Bragg grating has a constant period along the light guide. The base uniform Bragg grating is transformed to a nonuniform one as a result of emergence of nonuniform axial strains along the light guide. These changes in the period of Bragg grating lead to corresponding informative changes in reflection coefficients for various lengths of the waves entering into the optical fiber. As a result, the problem on finding the required density distribution function of axial strains along the optical fiber is reduced to solution of the Fredholm integral equation of the 1st kind by using the measured values of derivatives of reflection coefficients at the exit of the light guide. The results of numerical modeling of the spectra of coefficients of reflection from the nonuniform deformed Bragg grating are presented for various model and real distribution laws of diagnosed strains along the light guide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Okosi, Optical Fiber Sensors [in Russian], L., Energoatomizdat (1999). T. Okosi, Optical Fiber Sensors [in Russian], L., Energoatomizdat (1999).
2.
Zurück zum Zitat A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing - physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010).CrossRef A. Guemes, A. Fernandez-Lopez, and B. Soller, “Optical fiber distributed sensing - physical principles and applications,” Structural Health Monitoring, 9, No. 3, 233-245 (2010).CrossRef
3.
Zurück zum Zitat R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg grating,” Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin Heidelberg, 413-439 (2012). R. Suresh, S. C. Tjin, and J. Hao, “Fiber Bragg grating,” Smart Materials in Structural Health Monitoring, Control and Biomechanics, Springer, Berlin Heidelberg, 413-439 (2012).
4.
Zurück zum Zitat M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials & Structures, 12, No. 6, 914-924 (2003).CrossRef M. Prabhugoud and K. Peters, “Efficient simulation of Bragg grating sensors for implementation to damage identification in composites,” Smart Materials & Structures, 12, No. 6, 914-924 (2003).CrossRef
5.
Zurück zum Zitat S. V.Valzhel’, Fiber Bragg Grating [in Russian], SPb: Universitety ITMO (2015). S. V.Valzhel’, Fiber Bragg Grating [in Russian], SPb: Universitety ITMO (2015).
6.
Zurück zum Zitat K. V. Tatmyshevskii, “ Mechanoluminiscent sensor: mathematical model and dynamic properties,” Prib. Sist., Upravl., Kontrol, Diagn., No. 4, 35-39 (2005). K. V. Tatmyshevskii, “ Mechanoluminiscent sensor: mathematical model and dynamic properties,” Prib. Sist., Upravl., Kontrol, Diagn., No. 4, 35-39 (2005).
7.
Zurück zum Zitat Patent RU №2630537. Optical fiber pressure sensor, A. A. Pan’kov, publ. 11.09.201, Bull. No. 26; application RU No. 2016136058, 09.06.2016. Patent RU №2630537. Optical fiber pressure sensor, A. A. Pan’kov, publ. 11.09.201, Bull. No. 26; application RU No. 2016136058, 09.06.2016.
8.
Zurück zum Zitat A. A. Pan’kov, “Mathematical modeling of the piezoelectroluminiscence effect and diagnostics of pressure distribution along an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 4, 259-272 (2016). A. A. Pan’kov, “Mathematical modeling of the piezoelectroluminiscence effect and diagnostics of pressure distribution along an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 4, 259-272 (2016).
9.
Zurück zum Zitat A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 229-242. (2017).CrossRef A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 229-242. (2017).CrossRef
10.
Zurück zum Zitat Patent RU № 2643692. Optical fiber sensor of 3D stress state, A. A. Pan’kov, publ. 02.05.2018, Bull. No. 4; application No. 2017111405, 04.04.2017. Patent RU № 2643692. Optical fiber sensor of 3D stress state, A. A. Pan’kov, publ. 02.05.2018, Bull. No. 4; application No. 2017111405, 04.04.2017.
11.
Zurück zum Zitat S. M. Popov and Yu. K. Chamorovskii, “Fiber lasers with an optical fiber resonator from with a continuous Bragg grating,” Abstracts of reports of the All-Russia Conference on Fiber Optics, Perm, October 7-9, 57-58 (2015). S. M. Popov and Yu. K. Chamorovskii, “Fiber lasers with an optical fiber resonator from with a continuous Bragg grating,” Abstracts of reports of the All-Russia Conference on Fiber Optics, Perm, October 7-9, 57-58 (2015).
12.
Zurück zum Zitat A. V. Burdin, A. A. Vasilets, V. A. Burdin, and O. G. Morozov, “A distributed sensor based on multimode optical fibers supplemented with a fiber Bragg grating and functioning in a lowmode regime of signal transfer,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 25-26 (2016). A. V. Burdin, A. A. Vasilets, V. A. Burdin, and O. G. Morozov, “A distributed sensor based on multimode optical fibers supplemented with a fiber Bragg grating and functioning in a lowmode regime of signal transfer,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 25-26 (2016).
13.
Zurück zum Zitat S. M. Popov, O. V. Butov, V. V. Voloshin, I. L. Vorobjev, M. Yu. Vyatkin, A. O. Kolosovskii, and Yu. K. Chamorovskii, “OFTD optical fibers reflectometry with a distributed Bragg-type reflector,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 36-38 (2016). S. M. Popov, O. V. Butov, V. V. Voloshin, I. L. Vorobjev, M. Yu. Vyatkin, A. O. Kolosovskii, and Yu. K. Chamorovskii, “OFTD optical fibers reflectometry with a distributed Bragg-type reflector,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 36-38 (2016).
14.
Zurück zum Zitat S. S. Yakushin, A. V. Dostovalov, A. A. Vol’f, A. V. Parygin, and S. A. Babin, “Measuring of the size and positions of point-type temperature actions on long VBR,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 39-40 (2016). S. S. Yakushin, A. V. Dostovalov, A. A. Vol’f, A. V. Parygin, and S. A. Babin, “Measuring of the size and positions of point-type temperature actions on long VBR,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 39-40 (2016).
15.
Zurück zum Zitat A. P. Ovvyan, “Calculation homogeneous and inhomogeneous Bragg fiber gratings,” Molodezhn. Nauch. Tekhn. Vest., Elektron. Zhurn., Izd. FGBOU VPO, N. E. Bauman MGTU, No. 6 (2012). A. P. Ovvyan, “Calculation homogeneous and inhomogeneous Bragg fiber gratings,” Molodezhn. Nauch. Tekhn. Vest., Elektron. Zhurn., Izd. FGBOU VPO, N. E. Bauman MGTU, No. 6 (2012).
16.
Zurück zum Zitat S. G. Alyushina, P. E. Denisenko, O. G. Morozova, et al., “Fiber Bragg gratings with a phase structure in informationmeasurement systems,” Nelineinyi Mir, 9, No. 8, 522-528 (2011). S. G. Alyushina, P. E. Denisenko, O. G. Morozova, et al., “Fiber Bragg gratings with a phase structure in informationmeasurement systems,” Nelineinyi Mir, 9, No. 8, 522-528 (2011).
17.
Zurück zum Zitat Y. Wang, J. Gong, D. Y. Wang, et al., “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef Y. Wang, J. Gong, D. Y. Wang, et al., “A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett., 23, No. 1, 70-72 (2011).CrossRef
18.
Zurück zum Zitat A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, No. 12, 4309-4341 (1997).CrossRef A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum., 68, No. 12, 4309-4341 (1997).CrossRef
19.
Zurück zum Zitat J. Sipe, L. Poladian, and C. Martinjn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am., 11, No. 4, 1307-1320 (1994).CrossRef J. Sipe, L. Poladian, and C. Martinjn de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am., 11, No. 4, 1307-1320 (1994).CrossRef
20.
Zurück zum Zitat T. Erdogan, “Fiber grating spectra,” J. of Lightwave Technol., 15, No. 8, 1277-1294 (1997).CrossRef T. Erdogan, “Fiber grating spectra,” J. of Lightwave Technol., 15, No. 8, 1277-1294 (1997).CrossRef
21.
Zurück zum Zitat E. Rigas, R. Correia, N.,A.,Stathopoulos, S.,P. Savaidis, S.,W. James, D. Bhattacharyya, P. B. Kirby, and R. P. Tatam, “Evaluation of the optical switching characteristics of erbium-doped fibers for the development of a fiber Bragg grating sensor interrogator,” 23rd Int. Conf. on Optical Fiber Sensors (OFS23) Cantabria, Spain, 2-6 June (2014); http://proceedings.spiedigitallibrary.org E. Rigas, R. Correia, N.,A.,Stathopoulos, S.,P. Savaidis, S.,W. James, D. Bhattacharyya, P. B. Kirby, and R. P. Tatam, “Evaluation of the optical switching characteristics of erbium-doped fibers for the development of a fiber Bragg grating sensor interrogator,” 23rd Int. Conf. on Optical Fiber Sensors (OFS23) Cantabria, Spain, 2-6 June (2014); http://​proceedings.​spiedigitallibra​ry.​org
22.
Zurück zum Zitat I. I. Nуreev, “Passive optical sensor networks and key questions of using fiber Bragg grating in them,” Elektron. Nauch. Zhurn., Inzh. Vestnik Dona, N0. 2 (2016). ivdon.ru/ru/magazine/archive/n2y2016/3605 I. I. Nуreev, “Passive optical sensor networks and key questions of using fiber Bragg grating in them,” Elektron. Nauch. Zhurn., Inzh. Vestnik Dona, N0. 2 (2016). ivdon.ru/ru/magazine/archive/n2y2016/3605
24.
Zurück zum Zitat C. А. Babin, A. A. Vlasov, S. I. Kfblukov, and I. S. Shelemba, “Sensor system on the basis of optical fiber Bragg gratings,” Vest. NGU, ser. Fizika, 2, No. 3, 54-57 (2007). C. А. Babin, A. A. Vlasov, S. I. Kfblukov, and I. S. Shelemba, “Sensor system on the basis of optical fiber Bragg gratings,” Vest. NGU, ser. Fizika, 2, No. 3, 54-57 (2007).
25.
Zurück zum Zitat I. I. Nureev, A. D. Sakhabutdinov, S. V. Feofilaktov, and D. A. Cherepanov, “Statement of problems on calibration of the combined pressure and temperature sensors Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 70-71 (2016). I. I. Nureev, A. D. Sakhabutdinov, S. V. Feofilaktov, and D. A. Cherepanov, “Statement of problems on calibration of the combined pressure and temperature sensors Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 70-71 (2016).
26.
Zurück zum Zitat A. D. Sakhabutdinov, I. I. Nureev, S. V. Feofilaktov, D. A. Cherepanov, D. F Salahov, and O. G. Morozov, “Procedure of solution of problems on the calibration of combined pressure and temperature sensors,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 72-73 (2016). A. D. Sakhabutdinov, I. I. Nureev, S. V. Feofilaktov, D. A. Cherepanov, D. F Salahov, and O. G. Morozov, “Procedure of solution of problems on the calibration of combined pressure and temperature sensors,” Abstr. of reports of the First All-Russia Scientific-Practical Conference on Optical Reflectometry, May, 26-27, Perm, 72-73 (2016).
27.
Zurück zum Zitat Yu. N. Kul’chin, B. S. Notkin, and V. A. Sedov, “Neuro-iterative algorithm of tomographic reconstruction of distributed physical fields in optical fiber measurement systems,” Komput. Optika, 33, No. 4, 446-455 Yu. N. Kul’chin, B. S. Notkin, and V. A. Sedov, “Neuro-iterative algorithm of tomographic reconstruction of distributed physical fields in optical fiber measurement systems,” Komput. Optika, 33, No. 4, 446-455
28.
Zurück zum Zitat Yu. N. Kul’chin, Distributed Optical Fiber Measurement Systems, [in Russian], M., Fizmatlit (2001). Yu. N. Kul’chin, Distributed Optical Fiber Measurement Systems, [in Russian], M., Fizmatlit (2001).
29.
Zurück zum Zitat Tereschenko, Methods of Computer Tomography [in Russian], M., Fizmatlit (2004). Tereschenko, Methods of Computer Tomography [in Russian], M., Fizmatlit (2004).
30.
Zurück zum Zitat F. Natterer, Mathematics of Computerized Tomography, John Wiley and Sons Ltd., N. Y. (1986). F. Natterer, Mathematics of Computerized Tomography, John Wiley and Sons Ltd., N. Y. (1986).
31.
Zurück zum Zitat I. A. Zaitsev, O. V. Butov, V. V. Voloshin, I. L. Vorobyev, M. Yu. Vyatkin, A. O. Kolosovskii, S. М. Poov, and Yu. K. Chamorovskii, “Optical fiber with a distributed Bragg-type reflector,” Radiotekn. Elektronika, 61, No. 6, 602-608 (2016). I. A. Zaitsev, O. V. Butov, V. V. Voloshin, I. L. Vorobyev, M. Yu. Vyatkin, A. O. Kolosovskii, S. М. Poov, and Yu. K. Chamorovskii, “Optical fiber with a distributed Bragg-type reflector,” Radiotekn. Elektronika, 61, No. 6, 602-608 (2016).
32.
Zurück zum Zitat V. P. Matveenko, V. A. Fedorova, and I. N. Shardakov, “Theoretical substantiation of the possibility of construction of an optical fiber system for monitoring deformations of Earth surface,” Izv. RAN, MTT, No. 5, 46-52 (2013). V. P. Matveenko, V. A. Fedorova, and I. N. Shardakov, “Theoretical substantiation of the possibility of construction of an optical fiber system for monitoring deformations of Earth surface,” Izv. RAN, MTT, No. 5, 46-52 (2013).
33.
Zurück zum Zitat I. N. Shardakov, N. S., Sozonov, and R. V. Tsvetkov, “Experimental-theoretical foundations of automated systems of deformation monitoring with use of optical fiber elements,” Vest. Perm Nauch. Tsentr,. October-December, 91-95 (2016). I. N. Shardakov, N. S., Sozonov, and R. V. Tsvetkov, “Experimental-theoretical foundations of automated systems of deformation monitoring with use of optical fiber elements,” Vest. Perm Nauch. Tsentr,. October-December, 91-95 (2016).
34.
Zurück zum Zitat M. A. Zuev, V. V. Mahsidov, M. Yu. Fedotov, and A. M. Shienok, “Integration of an optical fiber into PKM and measurement of strain of a material with the help of fiber Bragg grating,” Mekh, Kompos. Mat. and Struct., 20, No. 4, 568-574 (2014). M. A. Zuev, V. V. Mahsidov, M. Yu. Fedotov, and A. M. Shienok, “Integration of an optical fiber into PKM and measurement of strain of a material with the help of fiber Bragg grating,” Mekh, Kompos. Mat. and Struct., 20, No. 4, 568-574 (2014).
35.
Zurück zum Zitat E. N. Kablov, D. V. Sivakov, I. N. Gulyaev, K. V. Sorokin, M. Yu. Fedotov, E. M. Dianov, S. A. Vasilyevm and O. I. Medvedkov, “Employment of an optical fiber as a strain sensor in for polymer composite materials,” All materials. Reference Book [in Russian], No. 3, 10-15 (2010). E. N. Kablov, D. V. Sivakov, I. N. Gulyaev, K. V. Sorokin, M. Yu. Fedotov, E. M. Dianov, S. A. Vasilyevm and O. I. Medvedkov, “Employment of an optical fiber as a strain sensor in for polymer composite materials,” All materials. Reference Book [in Russian], No. 3, 10-15 (2010).
36.
Zurück zum Zitat I. G. Naimushin, N. A. Trufanov, and I. N. Shardakov, “Numerical analysis of deformation processes in an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 1, 104-116 (2012). I. G. Naimushin, N. A. Trufanov, and I. N. Shardakov, “Numerical analysis of deformation processes in an optical fiber sensor,” Vest. Perm. Nats. Issl. Politekhn. Univ., Mekhanika, No. 1, 104-116 (2012).
37.
Zurück zum Zitat A. N. Anoshkin, A. A. Voronkov, N. A. Kosheleva, V. P. Matveenko, G. S. Serovaev, E. M. Spaskova, I. N. Shardakov. and G. S. Shipunova, “Measurement of nonuniform strain fields by the optical fiber sensor built in a polymer composite material,” Izv. RAN, МТТ, No. 5, 42-51 (2016). A. N. Anoshkin, A. A. Voronkov, N. A. Kosheleva, V. P. Matveenko, G. S. Serovaev, E. M. Spaskova, I. N. Shardakov. and G. S. Shipunova, “Measurement of nonuniform strain fields by the optical fiber sensor built in a polymer composite material,” Izv. RAN, МТТ, No. 5, 42-51 (2016).
38.
Zurück zum Zitat V. P. Matveenko, I. N. Shardakov, and N. A. Kosheleva, “Estimation of technological strains in polymer composite samples by using built-in optical fiber strain sensors,” Abstr. Of reports of the XX Winter School on the Mechanics of Continuous Media, Perm, February 13-16, 2017, Ekaterinburg, RIO UrO RAN, 219 (2017). V. P. Matveenko, I. N. Shardakov, and N. A. Kosheleva, “Estimation of technological strains in polymer composite samples by using built-in optical fiber strain sensors,” Abstr. Of reports of the XX Winter School on the Mechanics of Continuous Media, Perm, February 13-16, 2017, Ekaterinburg, RIO UrO RAN, 219 (2017).
Metadaten
Titel
Mathematical Model for Diagnosing Strains by an Optical Fiber Sensor with a Distributed Bragg Grating According to the Solution of a Fredholm Integral Equation
verfasst von
A. A. Pan’kov
Publikationsdatum
18.09.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 4/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9760-6

Weitere Artikel der Ausgabe 4/2018

Mechanics of Composite Materials 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.